期刊文献+

一类可调控的三次多项式曲线 被引量:3

A Class of Modifiable Cubic Polynomial Curve
下载PDF
导出
摘要 为拓展Bézier曲线的表示方法,本文首先给出了一组带有两个形状参数的三次调配函数,是二次Bernstein基函数的一种扩展。然后,基于该调配函数生成了一类可调控的三次多项式曲线,并讨论了该曲线与二次Bézier曲线及三次Bézier曲线之间的关系。事实表明,该曲线是二次Bézier曲线的一种扩展,不仅具有二次Bézier曲线的诸多特性,而且由于带有两个形状参数,使得曲线具有更强的表现能力,在控制顶点不变时,可通过修改两个形状参数对曲线进行局部或全局调节。为方便自由曲线的设计,还讨论了两段曲线的拼接条件,给出了该曲线在曲线设计中的实例应用。 For extending the representation of the Bezier curve, a class of cubic polynomial basis lunctlons wltn two shape parameters is presented in this paper firstly, which is an extension of the quadratic Bernstein basis. Then, a modifiable cubic polynomial curve is presented based on the basis functions, and the relation between the curve and the classical Bezier curves is discussed. The curve is an extension of the quadratic Bezier curve, which inherits most properties of the quadratic Bezier curve, and its shape can be local or globally modified by changing the values of the two shape parameters when the control points are not changed. For designing free curves, the continuity condition of the two-piece curves is discussed. Finally, some application examples of the curve in the curve design are presented.
作者 李军成
出处 《计算机工程与科学》 CSCD 北大核心 2010年第4期52-54,61,共4页 Computer Engineering & Science
基金 湖南人文科技学院资助项目(2008QN012)
关键词 三次多项式曲线 形状参数 BEZIER曲线 曲线设计 cubic polynomial curve shape parameter Bezier curve curve design
  • 相关文献

参考文献10

二级参考文献19

共引文献159

同被引文献32

  • 1吴晓勤,韩旭里.三次Bézier曲线的扩展[J].工程图学学报,2005,26(6):98-102. 被引量:83
  • 2吴晓勤,韩旭里,罗善明.四次Bézier曲线的两种不同扩展[J].工程图学学报,2006,27(5):59-64. 被引量:38
  • 3谢进,洪素珍.一类带两个形状参数的三次Bézier曲线[J].计算机工程与设计,2007,28(6):1361-1363. 被引量:7
  • 4Yan Lanlan, Liang Jiongfen. An extension of the B6zier model [J]. Applied Mathematics and Computation, 2011, 218(6): 2863-2879.
  • 5Fan Feilong, Zeng Xiaoming. S- bases and S- curves [J]. Computer-Aided Design, 2012, 44(11): 1049-1055.
  • 6Zhu Yuanpeng, Han Xuli. A class of ct[37-Bemstein-B6zier basis functions over triangular domain [J]. Applied Mathematics and Computation, 2013 220(17): 446-454.
  • 7Hart Xuli, Zhu Yuanpeng. Curve construction based on five trigonometric blending functions [J]. BIT Numerical Mathematics, 2012, 52(4): 953-979.
  • 8Juh/tsz I, R6th ,/~. Closed rational trigonometric curves and surfaces [J]. Journal of Computational and Applied Mathematics, 2010, 234(8): 2390-2404.
  • 9Bashir U, Abbsa M, Ali J M. The G2 and C2 rational quadratic trigonometric B6zier curve with two shape parameters with applications [J]. Applied Mathematics and Computation, 2013, 219(20): 10183-10197.
  • 10Hoffmann M, Juh~sza I. On interpolation by spline curves with shape parameters [C]//Advances in Geometric Modeling and Processing. Berlin Heidelberg, Springer, 2008: 205-214.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部