期刊文献+

电阻点焊接头熔核面积的预测 被引量:1

A prediction of nugget area in RSW
下载PDF
导出
摘要 以电阻点焊接头表面的数字图像作为信息源,探索了一种新的点焊接头质量无损检测方法。首先通过图像特征分析,将焊点表面图像划分为三个特征区域,提取三个同心圆的面积作为表征接头熔核面积的特征参量。其次,以提取的特征值作为输入向量,以接头横截面处的熔核面积作为评判标准,建立点焊接头熔核面积的SVM(支持向量机)等级分类模型。实验结果表明,该模型可以有效地对熔核面积进行预测分类,实现了对电阻点焊接头质量的无损评判,经验证其准确率可达96.667%。 A new non-destructive method was explored to monitor the joint quality based on digital images of resistance spot welding joints' surface.First ,welding joints' surface images were divided into three characteristic zones from which areas of three centric circle we~ extracted as characteristic parameters to characterize joints' nugget area.Then SVM (support vector machine) model of classification was established while the characteristic parameters were input vectors and the nugget area of joints' cross-sectional was considered as the evaluation criteria.Experimental results show that the model can predict and classify the nugget area effectively.It achieved the non-destructive evaluation of solder joints' nuclear area eventually.The accuracy rate of the model came up to 96.667%.
出处 《电焊机》 北大核心 2010年第3期72-74,共3页 Electric Welding Machine
基金 国家自然科学基金资助项目(50275028)
关键词 电阻点焊 数字图像 熔核面积 SVM resistance spot welding digital images nugget area support vector machine
  • 相关文献

参考文献4

  • 1Wu K C.Resistance spot welding of high contact-resistance surface for weld bonding[J].Welding Journal, 1975,54(12): 436-443.
  • 2Johnson K I,Needham J C.New design of resistance spot welding machine for quality control[J}.Welding Journal, 1972,51(3): 122-131.
  • 3张鹏贤,陈剑虹,杜文江.基于焊点表面图像处理的点焊质量监测[J].焊接学报,2006,27(12):57-60. 被引量:12
  • 4Nello Cristianini,John Shawe-Taylor.An introduction to support Vector machines and other kernel-based learning methods[M]. Beijing : Publishing House of Electronics Industry.2004.

二级参考文献6

  • 1肖强,叶文景,朱珠,陈瑶,郑海雷.利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法[J].生态学杂志,2005,24(6):711-714. 被引量:225
  • 2王耀南 李树涛.计算机图像处理与识别技术[M].北京:高等教育出版社,2003..
  • 3Cho H S,Chun D W.A microprocessor-based electrode movement controller for spot weld quality assurance[J].IEEE Transactions on Industrial Electronics,1985,32(3):234-238.
  • 4Tskums Masnori,Shinke Noboru.Evaluation of function of spot-welded joint using ultrasonic inspection (nondestructive evaluation on tension shearing strength with neural network)[J].Mechanics and Material Engineer,1996,39(10):626-632.
  • 5Brown J D,Rodd M G,Willams N T.Application of artificial intelligence techniques to resistance spot welds[J].Ironmaking and Steelmaking,1998,25(3):199-204.
  • 6Messler R W,Jou M,Li C J.An intelligent control system for resistance spot welding using a neural network and fuzzy logic[A].Conference Record of the 1995 IEEE[C].San Francisco,America,1995.1757-1763.

共引文献11

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部