期刊文献+

分离谱技术在超声衍射时差法信号处理中的应用 被引量:1

Application on split-spectrum technique in ultrasonic TOFD signal processing
下载PDF
导出
摘要 超声衍射时差(TOFD)方法因具有普通超声检测和射线检测的优点而被广泛应用于中厚板的焊缝检测与缺陷定量中。TOFD技术检测的是相对微弱、指向性差的衍射波信号,被检测材料所产生的结构噪声也会降低检测信号的信噪比,影响了TOFD检测的精度。将分离谱技术用于超声TOFD检测信号的处理,采用线性平均、极值阈值、极值阈值+最小值、最小值等四种恢复算法进行比较,并在最小值算法的基础上引入最小值选中次数加权算法恢复信号。结果表明:与传统的滤波方法相比,该方法能有效地提高了回波信号的信噪比,减小了TOFD检测中的缺陷定量误差。 With the advantage of precise quantification, ultrasonic time-of-flight-diffraction (TOFD) technique has been widely using in weld detection and defect quantification of middle thick plate. The signals detected by using TOFD technique are relatively weak diffraction wave signals with poor directivity, and the structure noise generated by the detected material will also reduce the signal-to-noise ratio and therefore affect the detection sensitivity of TDFD technique.. The split-spectrum technique is used for processing the ultrasonic TOFD detecting signal in this paper. Four restoration algorithms, i.e. the linear average, the maximal threshold, the maximal threshold+minimal value and the minimal value, are adopted for comparison. In the end the weighted algorithm of minimal number selected based on the minimal value algorithm is used to restore the signal. Compared with the traditional filtering method, the results show that this method can effectively increase the signal-to-noise ratio of echo signal and reduce the defect quantitative error of TOFD detection.
出处 《声学技术》 CSCD 2010年第1期44-47,共4页 Technical Acoustics
基金 航空基金(200700186) 江西省教育厅科技项目(EP200608010) 南昌航空大学研究生创新基金(YC2007020)
关键词 TOFD检测 信号处理 结构噪声 分离谱 定量精度 TOFD testing Signal processing Structure noise Split-spectrum Quantitative precision
  • 相关文献

参考文献8

二级参考文献19

共引文献47

同被引文献9

  • 1薛洪惠,刘晓宙,龚秀芬,章东.聚焦超声波在层状生物媒质中的二次谐波声场的理论与实验研究[J].物理学报,2005,54(11):5233-5238. 被引量:17
  • 2YONEYAMA M, FUJIMOTO J. The audio spotlight: an application of nordinear of sound waves to a new type of loudspeaker design[J]. J. Acoustic. Soc. Am., 1983, 73(5): 1532-1536.
  • 3YONEYAMA M, KAMAKURA T, IKEYAYA K. Developments of parametric loudspeaker for practical use[C]//Proceedings of the 10th International Symposium on Nonlinear Acoustics, Kobe, 1984: 147-150.
  • 4Durnin J. Exact solutions for nondiffracting beams I, The scalar theory[J]. Opt Soc Am, 1987, 4: 651-654.
  • 5Kuznetsov V E Equations of nonlinear acoustics[J]. J. Acoustic. Soc. Am., 1971, 16: 467-470.
  • 6Aanonsen S I, Naze Tjotta J, Tjotta S. Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[J]. J. Acoust. Soc. Am., 1984, 75(3): 749-768.
  • 7LI Yadong, Zagzebsld J A. Computer model for harmonic ultra- sound imaging[J]. IEEE Trans Ultrason Ferroelect Freq Contr, 2000, 47(4): 1000-1013.
  • 8Lee Y S, Hamilton M F. Time-domain modeling of pulsed finite-amplitude sound beams[J]. J. Acoustic. Soc. Am., 1995, 97(2): 906-917.
  • 9Khokhlova V A, Souchon R. Numerical modeling of finite-amplitude sound beams_Shock formation in the near field of a cw plane piston source[J]. J. Acoust. Soc. Am., 2001, 110(1): 95-108.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部