期刊文献+

正则化最小二乘线性判别分析算法

The Regularization Algorithm Based on Least Squares Linear Discriminant Analysis
下载PDF
导出
摘要 线性判别分析(Linear Discriminant Analysis,LDA)是用于降维和分类的方法,然而在遇到小样本问题时,由于全局散布矩阵是奇异的,所以传统的LDA方法是不适用的。为了解决LDA的这种缺点,提出了基于最小二乘线性判别分析(Least Squares Linear Discriminant Analysis,LS-LDA)的正则化算法,在LS-LDA中分别加入关于加权矩阵的L1范数、L2范数和弹性网络的惩罚项、来解决小样本问题,使模型具有鲁棒性和稀疏性。在对回归分析、正则化方法和LS-LDA相关技术进行深入分析的基础上,构建正则化最小二乘线性判别分析框架算法,实现数据降维。结合标准文本数据集进行实验,采用KNN(K-Nearest-Neighbor)分类器进行文本分类。实验结果表明,正则化的LS-LDA具有很好的分类性能,其中以加入了弹性网络惩罚项的LS-LDA最优。 Linear Discriminant Analysis (LDA) is a well-known technique for dimensionality reduction and classi fication, while the classical LDA formulation fails when the total scatter matrix is singular, encountered usually in un dersampled problems. In this paper, regularized Least Squares LDA (RLS-LDA) based on L2-norm, Ll-norm and the elastic net, is proposed to handle the problems, the resulting models are robust and sparse. Firstly, the theories about linear regression and regularization are explored, and the equivalence relationship between the least squares formulation and LDA for multi-class classifications under a mild condition is summarized. Secondly, the construction of RLS-LDA is presented. Performance evaluations of these approaches are conducted on benchmark collection of text documents. Results demonstrate the effectiveness of the proposed RLS-LDA and it's the RLS-LDA based on the elastic net that is better than others.
出处 《江西电力职业技术学院学报》 CAS 2010年第1期35-39,共5页 Journal of Jiangxi Vocational and Technical College of Electricity
基金 江西省教育厅科技项目(GJJ10446)
  • 相关文献

参考文献11

  • 1P.N. Bechumeour, J.P. Hespanha, D.J. Kriegman. Eigenfaces vs Fisherfaces: Recognition using class specific linear pro jection[C]. Saudi Arabia. KFUPM ePrints. IEEE Trans Pat tern Analysis and Machine Intelligence, 1997, 19 (7): 711- 720.
  • 2D. L. Swets, J.Y. Weng. Using discriminant eigenfeatures for image retrieval [C]. Saudi Arabia. KFUPM ePrints. IEEE Trans. Pattern Analysis and Machine Intelligence, 1996, 18 (8): 831-836.
  • 3J.H. Friedman. Regularized discriminant analysis [J]. Journal of the American Statistical Association, 1989, 84(40): 165- 175.
  • 4Y. Gno, T. Hastie, R. Tibshirani. Regularized linear dis criminant analysis and its application in microarrays [J]. Springer, 2007, 8(1): 86-100.
  • 5J. Ye. Characterization of a family of algorithms for general ized discriminant analysis on undersampled problems [J]. The Journal of Machine Learning Research, 2005, 6 (3): 483-502.
  • 6T. Hastie, A. Buja, R. Tibshirani. Penalized discriminant analysis[J]. Annals of Statistics, 1995, 23(1): 73-102.
  • 7J. Ye, T. Xiong. Computational and theoretical analysis of null space based and orthogonal linear discriminant analysis [J]. Department of Computer Science and Engineering,2006, 7(3): 1183-1204.
  • 8T. Hastie, R. Tibshirani, J.H. Friedman. The elements of sta tistical learning : data mining, inference, and prediction[J]. The Mathematical Intelligencer, 2005, 27(2): 83-85.
  • 9R. Tibshirani. Regression Shrinkage and Selection via the Lasso [J]. Journal of the Royal Statistical Society, 1996, 58 (1): 267-288.
  • 10J. Ye. Least squares linear discriminant analysis[C].Zoubin Ghahramani.Computing Literatt/re. Proceedings of the 24th international conference on Machine learning, 2007, 227 (9): 1087-1093.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部