期刊文献+

一类恰含两个圈的本原不可幂定号有向图的广义基

Generalized Bases of a Class of Primitive Non-powerful Signed Nearly Reducible Digraphs with Two Cycles
下载PDF
导出
摘要 研究了一类恰含两个圈的本原不可幂定号有向图,通过分析图形特点,综合利用SSSD途径对和Frobenius指数的特性推导出这类图的广义基. The generalized bases of a class of primitive non-powerful nearly reducible signed digraphs with two cycles are discussed. With the analysis of this digragh and the characteristics of SSSD walks and Frobenius, the generalized bases of this class digraphs are concluded.
出处 《河北北方学院学报(自然科学版)》 2010年第1期6-8,共3页 Journal of Hebei North University:Natural Science Edition
基金 山西省自然科学基金资助项目(2007011017 2008011009)
关键词 本原图 定号有向图 SSSD途径对 广义本原指数 广义基 primitive digraph signed digraph SSSD walks generalized exponent generalized base
  • 相关文献

参考文献4

  • 1You LH, Shao JY, Shan HY. Bounds'on the bases of irreducible generalized sign pattern matrices [J]. Linear Algebra Appl, 427 (2007): 285-300.
  • 2Shen J , Neufeld S. Local exponents of primitive digraphs[J]. Linear Algebra Appl. 1998, 268:117-129.
  • 3Gao YB, Shao YL, Shen J. Bounds on the local bases of primitive non--powerful nearly reducible sign patterns [J]. Linear Multil Algebra, 2009, 57 (2): 205-215.
  • 4Ma HP. Bounds on the local bases of primitive, non--powerful, minimally strong signed digraphs [J]. Linear Algebra Appl, 2009, 430:718-731.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部