Detection of Partial Discharge in Power Transformers Using Rogowski Coil and Multiresolution Analysis
被引量:1
Detection of Partial Discharge in Power Transformers Using Rogowski Coil and Multiresolution Analysis
摘要
Partial discharge detection in power transformers is discussed using a new approach that exploit the broad band of the Rogowski coils and the potential of two signal processing tools: discrete wavelet transform and empirical mode decomposition. Detecting and analyzing incipient activities of partial discharge can provide useful information to diagnostics and prognostics about transformer insulation. So, partial discharge signals embedded in the electric current at ground conductor are measured using the Rogowski coil. These signals are submitted to noise suppression and the partial discharges waveforms are extracted through different ways: using discrete wavelet transform and using empirical mode decomposition. The comparison of these two methods show that the extraction with discrete wavelet transform results in a faster and simpler algorithm than the empirical mode decomposition. But this one produces more precise waveforms due its adaptive characteristic.
参考文献16
-
1R.K. Mobley, An introduction to predictive maintenance, 2nd ed, USA, Butterworth-Heinemann, 2002.
-
2E. Vellucci, A. Cavallini, G.C. Montanari, D Experience on partial discharge monitoring ~ Fabiani, of power transformers, in: Conference Record of the 2004 IEEE International Symposium on Electrical Insulation, Indianapolis, USA, September, 2004.
-
3R. Bartnikas, Partial discharges: their mechanism, detection and measurement, IEEE Transactions on Dielectrics and Electrical Insulation 9 (5) (2002) 763-808.
-
4G.J. Paoletti, A. Golubev, Partial discharge theory and technologies related to medium-voltage electrical equipment, IEEE Transactions on Industry Applications 37 (1) (2001) 90-103.
-
5S.A. Boggs, Partial discharge: overview and signal generation, IEEE Electrical Insulation Magazine 6 (4) (1990) 33-39.
-
6I.Shim, J.J. Soraghan, W.H. Siew, Digital signal processing applied to the detection of partial discharge: an overview, IEEE Electrical Insulation Magazine 16 (2000) 6-12.
-
7Y. Tian, P.L. Lewin, S.J. Sutton, S.G. Swingler, PD characterization using wavelet decomposition of acoustic emission signals, Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, Toulouse, France, July, 2004.
-
8C.S. Burrus, R.A. Gopinath, H. Guo, Introduction to wavelets and wavelet transforms, New Jersey, Prentice Hall, 1998.
-
9X. Wang, B. Li, Z. Liu, H.T. Roman, O.L. Russo, K.K. Chin, K.R. Farmer, Analysis of partial discharge signal using the Hilbert-Huang transform, IEEE Transactions on Power Delivery 21 (3) (2006) 1063-1067.
-
10N.E. Huang, Z. Shen, S.R. Long, M.L. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis, Proc. Roy. Soc.London A 454 (1998) 903-995.
引证文献1
-
1Luiz Eduardo Borges da Silva,Erik Leandro Bonaldi,Levy Ely de Lacerda de Oliveira,Germano Lambert-Torres,Giscard F. C. Veloso,Ismael Noronha,Felipe dos Santos Moreira,José Nielze Caminha.Early Failure Detection in Power Transformers[J].Journal of Power and Energy Engineering,2013,1(5):30-40.
-
1文传博.多尺度分析在感应电动机故障诊断中的应用[J].微电机,2009,42(6):70-73.
-
2文传博,齐亮.永磁同步电机磁链信息在线监测的新方法[J].电力系统及其自动化学报,2010,22(2):22-26. 被引量:11
-
3周雪松,李显冰,马幼婕.离散小波变换在电力系统故障检测中的应用[J].天津理工大学学报,2008,24(4):31-34. 被引量:2
-
4李宏,于菲菲,方世辉.基于小波神经网络的电网负荷预测[J].现代计算机,2008,14(10):141-144. 被引量:3
-
5吕锋,孙杨,文成林,句希源.基于小波分析的电机故障振声诊断方法[J].电机与控制学报,2004,8(4):322-325. 被引量:13
-
6孙强,段凯.多机并网发电系统孤岛效应的检测方法[J].电力系统及其自动化学报,2012,24(5):63-66. 被引量:1
-
7王喜庄.配网电缆在线监视与故障定位研究[J].农业与技术,2008,28(6):162-165.
-
8孙晓晖,和红梅,何洪,孙士尉.基于小波变换的电能质量扰动检测与定位[J].河北工程技术高等专科学校学报,2011(1):40-43.
-
9刘美俊.基于小波变换的智能脱扣器改进算法研究[J].高电压技术,2004,30(5):25-27. 被引量:2
-
10邹积岩,段雄英,张铁.罗柯夫斯基线圈测量电流的仿真计算及实验研究[J].电工技术学报,2001,16(1):81-84. 被引量:82