摘要
对一类含时滞的脉冲神经网络平衡点的存在性和稳定性进行了研究.在不假定激励函数有界、单调或可微而仅假定激励函数Lipschitz连续的条件下,利用压缩映像原理证明了系统平衡点的存在性,利用右上Dini导数的性质并通过构造适当的Lyapunov函数得到了平衡点全局指数稳定的充分条件.文末通过实例说明了所获结论的有效性.
This paper is concerned with a class of neural networks with delays and inpulses. Sufficient conditions are obtained for the existence and global exponential stability of a unique equilibrium without assuming the activation function to be bounded, monotonic or differentiable. An illustrative example is given to demonstrate the effectiveness of the obtained results.
出处
《大学数学》
2010年第1期28-32,共5页
College Mathematics
基金
Science and technology plan Foundation of Guangzhou under Grant(2006j1-C0341)
关键词
脉冲
时滞
神经网络
全局指数稳定性
impulses
delays
neural networks
global exponential stability