期刊文献+

非负矩阵Perron根上界序列(英文)

A Series of Upper Bounds for the Perron Root of a Nonnegative Matrix
下载PDF
导出
摘要 给出了非负矩阵Perron根的一系列优化上界,即通过相似对角变换与Gerschgorin定理较好的估计了Perron根的上界,并且通过例子来说明这种方法的有效性. This paper proposes a series of improved upper hounds for Perron roots of nonegative matrices. Better estimates of the Perron root have been given by both diagonal transformation method and the extension of Gerschgorin Theory. Numerical experiment has been shown the effectiveness of our method.
作者 胡刚 荆燕飞
出处 《大学数学》 2010年第1期43-45,共3页 College Mathematics
关键词 非负矩阵 PERRON根 对角变换 nonnegative matrices Perron roots diagonal transformation method
  • 相关文献

参考文献8

  • 1Tasci D, Kirkland S. A sequence of upper bounds for the Perron root of a nonnegative matrix[J]. Linear Algebra Appl. , 1998, 273: 23--28.
  • 2Kolotilina L Y. Lower bounds for the Perron root of a nonnegative matrix[J].Linear Algebra Appl. , 1993, 180: 133--151.
  • 3Duan F, Zhang K. An algorithm of diagonal transformation for Perron root of nonnegative irreducible matrices[J]. Appl. Math. Comput. , 2006, 175:762--772.
  • 4Minc H. Nonnegative Matrices[M]. New York: ,1998:11 19,24--36.
  • 5Ledermann W. Bounds for the greatest latent root of a positive matrix[J].J. London Math. Soc. , 1950, 25:265 --268.
  • 6Ostrowski. Bounds for the greatest latent root of a positive matrix[J].J. I.ondon Math. Soc. , 1952, 27: 253-- 256.
  • 7Brauer. The theorems of I.edermann and Ostrowski on positive matrices[J].Duke Math. J. , 1957, 24: 265-274.
  • 8Huang T Z, Zhong S M and Li Z L. Matrix Theory[M]. Beijing: Advanced Educational Press, 2003: 144.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部