期刊文献+

基于小波包能谱熵与自组织RBF神经网络的低压断路器机械故障诊断 被引量:6

Mechanical Fault Diagnosis for Low Voltage Circuit Breaker Based on Energy Spectrum Entropy of Wavelet Packet and Self-Organized RBF Neural Networks
下载PDF
导出
摘要 利用小波包分解技术分析断路器故障时的振动信号,提取小波包的能谱熵,将其作为断路器故障模式的特征向量。然后,建立基于K-均值聚类方法的自组织径向基神经网络,对断路器的几种模拟故障进行识别分析,证明了算法的收敛性,给出收敛速度计算公式。通过仿真实验,验证了该方法的有效性,且较之传统BP神经网络有更快的收敛速度和更高的准确度。 By analyzing the vibration signal in the decomposition of wavelet packet when circuit breaker(CB) failed,the energy spectrum entropy of wavelet packet was extracted as the feature vector of failure patterns,Then,self-organized radia basis function(RBF) neural network was established based on K-means clustering method and the simulated faults of the CB was identified,the convergence of the algorithm was proved and the formula of convergence rate was provided.By simulating,the efficiency of the method was verified which was faster in convergence and higher in accuracy,compared with the traditional BP neural networks.
出处 《低压电器》 北大核心 2010年第4期1-5,33,共6页 Low Voltage Apparatus
关键词 小波包能谱熵 径向基神经网络 断路器 故障诊断 energy spectrum entropy of wavelet packet radia basis function(RBF) neural network circuit breaker fault diagnosis
  • 相关文献

参考文献18

二级参考文献95

共引文献393

同被引文献56

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部