期刊文献+

一种基于图像的移动机器人泊位方法 被引量:4

An Image-based Docking Method for Mobile Robot
下载PDF
导出
摘要 提出一种新的移动机器人泊位方法.该方法采用一幅预先采集的参考图像定义机器人的期望泊位状态(期望的位置和方向),利用尺度不变特征变换(SIFT)算法和基于双向BBF的特征匹配算法实现泊位站当前图像与参考图像之间的匹配以获取视觉反馈信息,基于极点伺服策略根据参考图像准直机器人,采用质心跟踪法防止目标图像出视场,采用RANSAC算法求解当前图像与参考图像间的仿射变换,利用一个末段控制策略实现精确泊位.本文方法不需要环境模型或人工标记.室内环境下的实验结果证实了该方法的有效性. A new docking method for mobile robot is proposed. The desired docking state (desired position and olientation) of the robot is defined by a pre-captured reference image. The scale invariant feature transform (SIFT) algorithm and a double direction best bin first (BBF) based feature matching algorithm are used to extract the visual feedback information by matching the current view of the docking station and the reference image. The robot is aligned against the reference image based on a epipole servoing strategy. A centroid tracking is used to avoid the object escaping from the field of view. A random sample consensus (RANSAC) algorithm is used to solve the affine transform between current and reference images, and a control rule at last stage is presented to realize precise docking. No more knowledge of the scene geometry or artificial marks are needed. The experiment results of a realistic indoor environment demonstrate the effectiveness of the proposed method.
出处 《机器人》 EI CSCD 北大核心 2010年第2期166-170,共5页 Robot
基金 国家863计划资助项目(2006AA04Z259 2007AA041603)
关键词 移动机器人 机器人泊位 视觉伺服 极线几何 mobile robot robot docking visual servoing epipolar geometry
  • 相关文献

参考文献12

  • 1Luo R C, Liao C T, Su K L, et al. Automatic docking and recharging system for autonomous security robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2005: 2953-2958.
  • 2Yu J X, Cai Z X, Duan Z H. Dead reckoning of mobile robot in complex terrain based on proprioceptive sensors[C]//International Conference on Machine Learning and Cybernetics. Piscataway, NJ, USA: IEEE, 2008:1930-1935.
  • 3Hashimoto M, Kawashima H, Nakagami T, et al. Sensor fault detection and identification in dead-reckoning system of mobile robot: Interacting multiple model approach[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2001: 1321-1325.
  • 4Sagues C, Guerrero J J. Visual correction for mobile robot homing[J]. Robotics and Autonomous Systems, 2005, 50(1): 41-49.
  • 5Comport A, Pressigout M, Marchand E, et al. A visual servoing control law that is robust to image outliers[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2003: 492-497.
  • 6Lopez-Nicolas G, Saguies C, Guerrero J J, et al. Nonholonomic epipolar visual servoing[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2006: 2378-2384.
  • 7Matsumoto Y, Inaba M, Inoue H. Visual navigation using viewsequenced route representation[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1996: 83-88.
  • 8Blanc G, Mezouar Y, Martinet E Indoor navigation of a wheeled mobile robot along visual routes[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2005: 3354-3359.
  • 9Kim S, Oh S Y. Hybrid position and image based visual servoing for mobile robots[J]. Journal of Intelligent and Fuzzy Systems, 2007, 18(1): 73-82.
  • 10Mariottini G L, Prattichizzo D, Oriolo G. Image-based visual servoing for nonholonomic mobile robots with central catadioptric camera[C]//IEEE International Conference on Robotics and Automation. Piseataway, NJ, USA: IEEE, 2006: 538-544.

同被引文献38

  • 1丁辉,付梦印.基于标志点识别的自主车视觉导航[J].光学技术,2005,31(6):864-867. 被引量:7
  • 2Hong J W, Tan X N, Pinette B, et al. Image-based homing[J]. IEEE Control Systems Ma-azine, 1992, 12(1): 38-45.
  • 3Cartwright B A, Collett T S. Landmark learning in bees: Experiments and models[J]. Journal of Comparative Physiology, 1983, 151(4): 521-543.
  • 4Rofer T. Controlling a wheelchair with image-based homing[R]. Manchester, UK: Manchester University, 1997. Moiler R. Insect visual homing strategies in a robot with analog processing[J]. Biological Cybernetics, 2000, 83(3): 231-243. Franz M O, Scholkopf B, Mallot H A, et al. Where did I take that snapshot? Scene-based homing by image matching[J]. Bi- ological Cybernetics, 1998, 79(3): 191-202.
  • 5Argyros A A, Bekris K E, Orphanoudakis S C, et al. Robot homing by exploiting panoramic vision[J]. Autonomous Robots, 2005, 19(1): 7-25.
  • 6Franz M O, Scholkopf B, Mallot H A, et al. Where did I take that snapshot? Scene-based homing by image matching[J]. Biological Cybernetics, 1998, 79(3): 191-202.
  • 7Argyros A A, Bekris K E, Orphanoudakis S C, et al, Robot homing by exploiting panoramic vision[J]. Autonomous Robots, 2005, 19(1): 7-25.
  • 8Moiler R, Vardy A, Kreft S, et al. Visual homing in environments with anisotropic landmark distribution[J]. Autonomous Robots, 2007, 23(3): 231-245.
  • 9Moiler R. Local visual homing by warping of two-dimensional images[J]. Robotics and Autonomous Systems, 2009, 57(1): 87- 101.
  • 10Moiler R, Krzykawski M, Gerstmayr L. Three 2D-warping schemes for visual robot navigation[J]. Autonomous Robots, 2010, 29(3/4): 253-291.

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部