期刊文献+

二阶反周期边值问题Nagumo型存在性定理(英文) 被引量:1

Nagumo type existence results about second-order anti-periodic boundary value problems
下载PDF
导出
摘要 讨论Nagumo型条件结合符号条件下二阶反周期边值问题的存在性问题,借助经典的不动点定理得到至少存在一个解的充分条件. We discuss the existence of solutions to second-order anti-periodic boundary value problems in presence of Nagumo type condition and sign condition. Our results are sufficient to guarantee the existence of at least one solution.
作者 王琼 邢业朋
出处 《上海师范大学学报(自然科学版)》 2010年第1期13-23,共11页 Journal of Shanghai Normal University(Natural Sciences)
基金 supported by Shanghai Normal University Leading Academic Discipline Project(DZL805) The National Natural Science Foundation of China(10671127) the National Natural Science Foundation of Shanghai(08ZR1416000)
关键词 二阶 反周期 Nagumo型条件 second-order anti-periodic Nagumo condition
  • 相关文献

参考文献31

  • 1AFTABIZADEH A R, AIZICOVICI S, PAVEL N H. Anti - periodic boundary value problems for higher order differential equations in Hilbert spaces [ J ]. Nonlinear Analysis, 1992, 18 (3) : 253 - 267.
  • 2AFTABIZADEH A R, HUANG Y K, PAVEL N H. Nonlinear third - order differential equations with anti - periodic boundary conditions and some optimal control problems[ J]. J Math Anal Appl, 1995, 192 (1) : 266 -293.
  • 3BASHIR A, JUAN J N. Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti -periodic boundary conditions [ J ]. Nonlinear Analysis:Theory, Methods and Applications, In Press.
  • 4AHMADINIA M. , LOGHAMNI G B. Splines and anti-periodic boundary -value problems [ J]. Int J Comput Math, 2007,84(12) : 1843 - 1850.
  • 5AIZICOVICI S, MCKIBBEN M, REICH S. Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities[J]. Nonlinear Analysis, 2001, 43:233-251.
  • 6AIZICOVICI S, NICOLAE H P. Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space[ J]. Journal of Functional Analysis, 1991,99(2) : 387 -408.
  • 7BATCHELOR M T, BAXTER R J, O'ROURKE M J, et al. Exact solution and interfacial tension of the six - vertex model with anti-periodic boundary conditions [ J ]. J Phys, 1995, 28 (A) :2759 - 2770.
  • 8BONILLA L L, HIGUERA F J. The onset and end of the Gunn effect in extrinsic semiconductors [ J ]. SIAM J Appl Math, 1995, 55(6) :1625 - 1649.
  • 9CABADA A, VIVERO D R. Existence and uniqueness of solutions of higher - order antiperiodic dynamic equations [ J ]. Adv Difference Equ ,2004 ,4 : 291 - 310.
  • 10CHEN Y Q, NIETO J J, OREGAN D. Anti-periodic solutions for fully nonlinear first -order differential equations[ J ]. Mathematical and Computer Modelling, 2007, 46(9 - 10) : 1183 - 1190.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部