期刊文献+

p-截面体的性质与推广

Some properties of p-cross-section bodies and generalazation.
下载PDF
导出
摘要 对p≥-1,GARDNER RJ和GIANNOPOULOS A A引进了p-截面体CpK,并就p的不同取值,对CpK的凸性作了探讨.首先证明了CpK的一些性质,诸如原点对称的n维椭球E的p-截面体是它的极体的一个伸缩、CpCqE=CqCpE,V(CnK)=V(IK)等.而后通过探讨混合径向平均体Rp(K,L)与混合p-截面体Cp(K,L)的相关性,将p-截面体的一些性质推广到了Cp(K,L),并证明了当K和L是En中的凸体且K■L时,C1(K,L)是一个凸体. For p≥-1,Gardner R J and Giannopoulos A A introduced p-cross-section bodies CpK and went further into the convexity of CpK for different p.Some new properties of CpK are proved,for example,the p-cross-section body of an origin symmetric ellipsold is a dilatation of its polar,CpCqE=CqCpE,V(CnK)=V(IK)etc.,then some properties of CpK to mixed p-cross-section bodies Cp(K,L) by approaching the relationship between Rp(K,L) and Cp(K,L) are generalized and it is proved that if K and L are convex bodies in En,K lohtain L,then C1(K,L) is a convex body.
作者 沈亚军
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2010年第2期144-147,共4页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(10671117)
关键词 p-截面体 混合p-截面体 凸性 推广 p-cross-section body mixed p-cross-section body convexity generalazation
  • 相关文献

参考文献9

  • 1GARDNER R J, GIANNOPOULOS A A. p-crosssection bodies[J]. Indiana Univ Math J, 1999,48 (2):593--613.
  • 2GARDNER R J, ZHANG G. Affine inequalities and radial mean bodies[J]. American J of Mathematics, 1998,120(3) : 505 - 528.
  • 3KOLDOBSKY A. Fourier analysis in convex geometry [C]//Mathematical Surveys and Monographs. Providence: American Mathematical Society, 2005,116 : 27.
  • 4冷岗松,吕松军,袁俊.对偶L_p-质心体与Fourier变换[J].数学学报(中文版),2007,50(6):1419-1424. 被引量:2
  • 5HARDY G H, LITTLEWOOD J E, POLYA G. Inequalities[M]. Cambridge: Cambridge University Press, 1959:64--94.
  • 6MARTINI H. Extremal equalities for cross-sectional measures of convex bodies [ C]//Proe 3rd Geometry Congress ( thessaloniki 1991 ). Thessaloniki: Aristoteles Univ Press,1992:285-296.
  • 7LUTWAK E. Dual mixed volumes[J]. Pacific J Math, 1975,58(2) :531-538.
  • 8GARDNER R J. Geometric Tomography[M]. 2nd Ed, Cambridge: Camgridge University Press, 2006 : 308.
  • 9BUSEMANN H. A theorem on convex bodies of the Brunn-Minkowski type[J]. Proe Nat Aead Sci, 1949,35 (1) :27--31.

二级参考文献13

  • 1Lutwak E., Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 1990, 60(3): 365-391.
  • 2Grinberg E., Zhang G., Convolutions, transforms and convex bodies, Proc. London Math. Soc., 1999, 78: 77-115.
  • 3Lutwak E., Yang D., Zhang G., A new ellipsoid associated with convex bodies, Duke Math. J., 2000, 104: 375-390.
  • 4Lutwak E., Yang D., Zhang G., Lp John ellipsoids, Proc. London Math. Soc., 2005, 90: 497-520.
  • 5Wang W. D., Leng G. S., On some inequalities for the new geometric body Γ-p, Acta Mathematica Sinica, Chinese Series, 2006, 49(6): 1327-1334.
  • 6Firey W. J., p-means of convex bodies, Math. Scand., 1962, 10: 17-24.
  • 7Lutwak E., The Brunn-Minkowski-Firey Theory I: Mixed volumes and the Minkowski Problem, J. Differential Geom., 1993, 38: 131-150.
  • 8Lutwak E., The Brunn-Minkowski-Firey Theory Ⅱ: Affine and geominimal surface areas, Adv. Math., 1996, 118: 244-294.
  • 9Koldobsky A., Fourier analysis in convex geometry, Mathematical Surveys and Monographs, American Mathematical Society, Providence RI, 2005.
  • 10Koldobsky A., Ryabogin D., Zvavitch A., Projections of convex bodies and the Fourier transform, Israel J. Math., 2004, 139: 361-380.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部