期刊文献+

切削制备纳米材料过程的应变与温度预测 被引量:1

The Prediction of Strain and Temperature in the Process of Cutting for Nano-materials
下载PDF
导出
摘要 大应变切削是制备纳米材料的一种新方法。切削过程中的应变和温度是影响晶粒细化程度的两个重要参数。在DEFORM软件环境下,建立铝合金6061切削过程的有限元模型,通过切削过程的有限元仿真,研究刀具的切削角度、切削用量对大应变切削过程中的材料应变、切削温度的影响规律。研究表明:影响剪切应变的主要因素是刀具前角,前角越小,对应的剪切应变越大;大应变主要集中在剪切区域,即第一变形区;影响切削温度的主要因素是切削速度,在切削速度较低时,切削温度上升速度缓慢,将切削速度由目前20mm/s提高到100mm/s,仍然可以使切削温度控制在铝合金6061动态再结晶温度之下,可以大幅度提高制备纳米材料的效率。 Large stain deformation by machining is a new method of preparing nanostructured materials. Strain and temperature in the cutting process are the two important parameters which impact the grain refinement. In the DEFORM software environment, the finite element model of 6061 aluminum alloy cutting process was established. Through the finite element simulation of the cutting process, the regularities of strain and temperature, which influenced by the angle of tool and cutting parameters were revealed in the cutting process. Study shows that: the main factor impacting the shear strain is rake angle. The smaller the rake angle, the bigger of the shear strain. The large strain mainly concentrate in the shear region, which is the first deformation zone. The main impacting factor on cutting temperature is cutting speed, and the cutting temperature rises slowly in the low cutting speed. When the cutting speed rises from 20 mm/s to 100 mm/s, the temperature can be still controlled under the dynamic recrystallization temperature of 6061 aluminum alloy, and it can improve the efficiency of preparation of nanomaterials.
出处 《机床与液压》 北大核心 2010年第5期9-11,共3页 Machine Tool & Hydraulics
基金 国家科技支撑计划课题资助项目(2008BAF32B06)
关键词 大应变切削 DEFORM模拟 等效应变 温度 Large strain machining Deform simulation Effective strain Temperature
  • 相关文献

参考文献8

  • 1Ravi Shankar M, Srinivasan Chandrasekar, Alexander H King, et al. Microstructure and stability of nanocrystalline aluminum6061 created by large strain machining[ J]. Acta Materialia,2005 ,53 :4781 - 4793.
  • 2Swaminathan Srinivasan, Shankar M Ravi, Lee Seongyl, et al. Large strain deformation and ultra-fine grained materials by machining [ J ]. Materials Science and Engineering A 410-411 ( 2005 ) :358 - 363.
  • 3唐志涛,刘战强,艾兴,付秀丽.金属切削加工热弹塑性大变形有限元理论及关键技术研究[J].中国机械工程,2007,18(6):746-751. 被引量:36
  • 4Srinivasan Swaminathan, Shankar M Ravi, Rao Balkrishna C,et al. Severe plastic deformation (SPD) and nanostructured materials by machining[ J]. Springer Science,2007, 42 : 1529 - 1541.
  • 5于贻鹏.金属切削过程的有限元法仿真研究[M].大连:大连理工大学,2005.12.
  • 6方刚,曾攀.金属正交切削工艺的有限元模拟[J].机械科学与技术,2003,22(4):641-645. 被引量:61
  • 7顾立志,袁哲俊,龙泽明,张丽萍.正交切削中切屑温度分布的研究[J].机械工程学报,2000,36(3):82-85. 被引量:12
  • 8Strenkowski J S, Moon K J. Finite element prediction of chip geometry and tool/workpiece temperature distribution in orthogonal metal cutting [ J ]. Transaction of ASME Journal of Engineering Industry, 1990,127 : 313 - 318.

二级参考文献32

  • 1Ceretti E, lucchi M, Ahan T. FEM simulation of orthogonal cutting, serrated chip formation[J]. Journal of Materials Processing Technology, 1999,95 : 1 7 - 26.
  • 2Ceretti E, Lazzaroni C, Menegardo L, Altan T. Turning simulation using a three-dimension FEM code[J]. Journal of Materials Processing Technology, 2000,98 : 99- 103.
  • 3Ceretti E,Taupin E,Altan T. Simulation of metal flow and fracture application in orthogonal cutting, blanking and cold extrusion[J]. Annal of CIRP, 1997,46(1) :187-190.
  • 4Zhang L C. On the separation criteria in the simulation of orthogonal metal cutting using the finite element method[J]. Journal of Materials Processing Technology, 1999,88-89.
  • 5Huang J M, Black J T. An evaluation of chip separation Criteria for the FEM simulation of machining[J]. ASME.Journal of Manufacturing Science and Engineering, 1996,118:118-545.
  • 6Lin Zone-Ching,Lai Wun-Ling, Lin H Y, Liu C R. The study of ultra-precision machining and residual stress for NiP alloy with different cutting speeds and depth of cut[J]. Journal of Materials Processing Technology, 2000,97:200-210.
  • 7Movahhedy M,Gadala M S, Altintas Y. Simulation of the orthogonal metal cutting process using an arbitrary Lagrangian-Eulerian finite-element method [J]. Journal of Material Processing Technology, 2000,103 : 267 - 275.
  • 8Piispanen V. Theory of formation of metal chips[J]. Journal of Applied Physics, 1948,19 : 876.
  • 9Merchan M E. Mechanics of the metal cutting process[J].Journal of Applied Physics, 1945,19:267.
  • 10Oxley P L B. Shear angle solutions in orthogonal machining[J]. International of Journal of Machine Tool Design Research. 1965,2:219.

共引文献97

同被引文献10

  • 1杨继昌,刘伟成.低速正交金属切削中工件表层加工硬化深度的预报[J].应用科学学报,1995,13(3):363-368. 被引量:6
  • 2朱云明.金属切削毛刺的形成与控制研究[D].镇江:江苏大学,2006.
  • 3Wang G C, Shen C G, Pei H J, et al. Formation and control of two side direction burr [ J ]. Advanced Materials Research, 2007.24-25:39 - 44.
  • 4Nakayama K, Arai M. Burr formation in metal cutting [ J ]. Annals of the CRIP, 1987,36(1):33-36.
  • 5Qu H J, Wang G C, Pei H J, et al. Formation and simulation of cutting-direction burr in orthogonal cutting [ J ]. Advanced Ma- terials Research, 2007,24-25:249 - 254.
  • 6Qu H J, Wang G C, Zhu Y M, et al. Formation and simulation of two side direction burr in orthogonal cutting [ J ]. Advanced Materials Research, 2008,53-54:77 - 84.
  • 7Cockroft M G. Determination of workpiece flow stress and friction at chip-tool contact for high-speed cutting [ J ]. International Journal of M, tw.hin- Tools & bltmtd'aetttr-, 21300,40(1) :133 -152.
  • 8Zorev N N. Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting proceedings of in- ternational research in production engineering[ A]. Internation- al Research in Production Engineering ASME [ C -, New York, 1963.
  • 9吴春凌,叶邦彦.制造纳米材料的新颖方法——切削(英文)[J].科学技术与工程,2009,9(19):5783-5787. 被引量:2
  • 10李德宝.金属切削中工件表层加工硬化模拟[J].工具技术,2004,38(4):14-16. 被引量:8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部