期刊文献+

乘积构形的良划分性

Nice partition of product arrangements
下载PDF
导出
摘要 已知乘积构形为超可解构形充要条件是每个因子构形都是超可解构形,将此结论推广到良划分构形,证明了乘积构形(A1×…×Ak,V1…Vk)为良划分构形的充要条件是因子构形(Ai,Vi),1≤i≤k都是良划分构形。 It is known that a product arrangement is a supersolvable arrangement if, and only if, each factor arrangement is also a supersolvable arrangement. This conclusion for supersolvable arrangements is extended to nice partition arrangements and it is proven that a product arrangement (At,×…×Ak;V1+…+VK) is a nice partition arrangement if, and only if, each factor arrangement (Ai, Vi) , 1 ≤ i ≤ k is also a nice partition arrangement.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期142-144,共3页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然科学基金(10671009)
关键词 超平面构形 乘积构形 良划分构形 hyperplane arrangement product arrangement nice partition arrangement
  • 相关文献

参考文献5

二级参考文献24

  • 1Richard P.An introduction to hyperplane arrangements[M].America:Park City Mathematics Series,2004:1-39.
  • 2Orlik P,Terao H.Arrangements of hyperplanes[M].Berlin,Heidelberg:Springer-Verlag,1992:1-57.
  • 3Jacobsion N.Basic algebra[M].Berlin,Heidelberg:Springer-Verlag,2002.
  • 4Orlik P,Terao H.Arrangements of Hyperplanes.Berlin,Heidelberg:Springer-Verlag,1992
  • 5Cordovil R.On the center of the fundamental group of the complement of a hyperplane arrangement.Portugaliae Mathematica,1994,51:363-373
  • 6Cohen D.Suciu A.On Milnor fibrations of arrangements.J Lodon Math Soc,1995,51:105-119
  • 7Cohen D,Orlik P.Some cyclic covers of complements of arrangements.Topology & Appl,2002,118:3-15
  • 8Cohen D,Orlik P.Ganss-Manin connections for arrangements,Ⅰ.Eigenvalues.Compositio Math,2003,136:299-316
  • 9Cohen D,Orlik P.Gauss-Manin connections for arrangements,Ⅱ.Nonresonant weights.Amer J Math,2005,127:569-594
  • 10Cohen D,Orlik P.Gauss-Manin connections for arrangements,Ⅲ.Formal connections.Trans Amer Math Soc,2005,357:3031-3050

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部