摘要
已知乘积构形为超可解构形充要条件是每个因子构形都是超可解构形,将此结论推广到良划分构形,证明了乘积构形(A1×…×Ak,V1…Vk)为良划分构形的充要条件是因子构形(Ai,Vi),1≤i≤k都是良划分构形。
It is known that a product arrangement is a supersolvable arrangement if, and only if, each factor arrangement is also a supersolvable arrangement. This conclusion for supersolvable arrangements is extended to nice partition arrangements and it is proven that a product arrangement (At,×…×Ak;V1+…+VK) is a nice partition arrangement if, and only if, each factor arrangement (Ai, Vi) , 1 ≤ i ≤ k is also a nice partition arrangement.
出处
《北京化工大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第2期142-144,共3页
Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金
国家自然科学基金(10671009)
关键词
超平面构形
乘积构形
良划分构形
hyperplane arrangement
product arrangement
nice partition arrangement