期刊文献+

小波神经网络在粮食产量预测中的应用 被引量:1

Application of Wavelet Neural Network to Forecast of Grain Output
下载PDF
导出
摘要 文章提出一种基于小波神经网络的粮食产量预测模型。给出具体的网络学习算法,并结合算法对我国粮食产量进行预测。为验证模型有效性,进行了对比测试。分析结果表明,小波神经网络模型比传统的BP神经网络模型具有收敛速度快,预测精度高的特点。 This paper proposed a forecast model of grain output based on wavelet neural network.Besides,detail learning algorithm was presented and it was used in the forecast of China's grain output.To validate effectiveness of the model,the test data were input separately wavelet neural network and BP neural network.By comparative test,higher precision and speed were achieved by using the model based on wavelet neural network.
作者 张坤
出处 《计算机与数字工程》 2010年第3期176-178,共3页 Computer & Digital Engineering
关键词 小波 神经网络 预测模型 wavelet neural network prediction model
  • 相关文献

参考文献6

二级参考文献30

  • 1剧宗善.马尔柯夫预测模型在南湾水库水资源预报中的应用[J].系统工程理论与实践,1993,13(4):65-71. 被引量:2
  • 2朱孔来.灰色马尔柯夫链预测模型及其应用.系统工程理论与实践,1993,(2):33-37.
  • 3Nag P K, Maly W, Jacobs H. Advanced forecasting of cost and yield [ J]. Semiconductor International,1998,21 (8) :163-170.
  • 4Wang Q, Stockton D J, Baguley P. Using neural networks in cost model development process [ C]//Proc of the 16th National Conf on Manufacturing Research. UK :Professional Engineering,2000:59-63
  • 5Grazianis F L. Soft sensors for product quality monitoring in debutanizer distillation columns [ J]. Control Engineering Practice,2005,13 (8) :499-508.
  • 6Kenneth P, Rainer M, Jouni A L. Differential evolution : a practical approach to global optimization ( Natural Computing Series) [ M ]. [ S.l. ] :Springer,2004.
  • 7.2001中国经济年鉴[M].北京:中国经济年鉴出版社,2001..
  • 8I Daubechies.Ten Lectures on Wavelets.CBMS-Conference Lecture Notes[M].SIAM Philadelphia:SIAM V.6,1992.
  • 9G Krishna Prasad,J S Sahambi.Classification of ECG Arrhythmias using Multi-Resolution Analysis and Neural Networks[C]// IEEE TENCON 2003.Bangalore,India,Allied Publishes Pvt Ltd,2003:482-488.
  • 10Clifton D,Addison P S,Stiles M K,et al.Using wavelet transform reassignment techniques for ECG characterisation[J].Computers in Cardiology(S0276-6574),2003,9(1):581-584.

共引文献74

同被引文献20

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部