期刊文献+

小波仿射不变函数与凸壳相结合的目标识别 被引量:1

Object Recognition Based on Wavelet Affine Invariant Function and Convex Hull
下载PDF
导出
摘要 提出一种将小波仿射不变函数与凸壳相结合进行目标识别的方法。基于小波仿射不变函数构造了绝对小波仿射不变函数,作为待识别目标的特征向量,与凸壳相结合进行目标识别。该方法首先提取待识别目标的轮廓线,然后以轮廓线的一个凸壳顶点为起始点重新构造目标轮廓线点列,计算轮廓线点列的绝对小波仿射不变函数,与模板库中的模板进行匹配,根据最大相关原则识别目标。实验结果表明了该方法的有效性。 A method which combined Wavelet Affine Invariant Function (WAIF) with Convex Hull for object recognition is proposed. The Absolute Wavelet Affine Invariant Function (AWAIF) is constructed based on WAIF,and is used as the eigenvector of the object to be recognized,and is combined with Convex Hull for object recognition. First,contour line of the object to be recognized is extracted. Then,a new contour line whose start point is one of vertex of the convex hull of the object, and AWAIF of the contour line is calculated and used as the eigenvector. The object is then recognized according to the maximum correlation rule. The experiment results show efficiency of the proposed method.
作者 张明杰
出处 《现代电子技术》 2010年第6期156-159,共4页 Modern Electronics Technique
关键词 小波仿射不变函数 绝对小波仿射不变函数 仿射变换 相关系数 凸壳 wavelet affine invariant function absolute wavelet affine invariant function affine transform correlation coefficient convex hull
  • 相关文献

参考文献10

  • 1Akhtar J, Javed M Y. Image Compression with Different Types of Wavelets[A]. International Conference on Emerging Technologies[C]. 2006 : 133 - 137.
  • 2Tieng Q M,Boles W W. Recognition of 2D Object Contours Using the Wavelet Transform Zero - crossing Representation[J]. IEEE Trans. on PAMI, 1997,19(8) :910 - 916.
  • 3Sun Yankui, Huang Wan. Separable 2D Dyadic Wavelet and its Applications in Contour Detection of Handwriting[A]. International Conference on Wavelet Analysis and Pattern Recognition[C]. 2007(3):1 316- 1 321.
  • 4Chen Guangyi,Tien D B. Invariant Fourier Wavelet Descriptor for Pattern Reeognition[J]. Pattern Recognition, 1999,32 (7):1 083-1 088.
  • 5Kiymik M K, Akin M, Subasi A. Automatic Recognition of Alertness Level by Using Wavelet Transform and Artificial Neural Network [J]. Journal of Neuroscience Methods, 2004,139(2) :231 - 240.
  • 6Khalil M, Bayoumi M. Invariant 2D Object Recognition Using the Wavelet Modulus Maxima[J]. Pattern Recognition Letters,2000,21(9):863 - 872.
  • 7Khalil M I, Bayoumi M. A Dyadic Wavelet Affine Invariant Function for 2D Shape Recognition[J]. IEEE Trans. on PAMI. 2001,23(10):1 152-1 164.
  • 8Bala E,Cetin A C. Computationally Efficient Wavelet Affine Invariant Functions for Shape Recognition[J]. IEEE Trans. on PAMI. 2004,26(8):1 095- 1 099.
  • 9Ingrid Daubechies. Ten Lectures of Wavelets [M]. Society for Industrial and Applied Mathematics, 1992.
  • 10Yang Zhengwei, Fernand S Cohen. Image Registration and Object Recognition Using Affine Invariants and Convex Hulls[J]. IEEE Trans. on Image Processing, 1999,8 ( 7 ): 934 - 946.

同被引文献9

  • 1SMITH S M, BRADY J M. SUSAN-a new approach to low level image processing [J].International Journal of Com- puter Vision, 1997, 23 (11): 45-78.
  • 2FAUGERAS O, HOTZ B, MATHIEU H, et al. Real-time correlation-based stereoalgorithm: implementations and ap- plications [R]. France: INRIA, 1993.
  • 3ZITNICK C L, KANADE T. A cooperative algorithm for stereo matching and occlusion detection [J].IEEE Transaction s on Pattern analysis and Machine intelligence, 2000, 22 (7) : 675-684.
  • 4SUN C. Fast stereo matching using rectangular subregioning and 3D maximum-surfacetechniques[J].International Journal of Computer Vision, 2002, 47 (1/3): 99-117.
  • 5SCHARSTEIN S. A taxonomy and evaluation of dense two- frame stereo correspondence algorithms [J]. International Journal of Computer Vision, 2002, 47 (1/3): 7-42.
  • 6郑南宁.计算机视觉和模式识别[M].北京:国防工业出版社,1998..
  • 7曾莹,刘波.一种基于关节角度的步态识别新方法[J].现代电子技术,2010,33(10):86-89. 被引量:8
  • 8孙宇臣,葛宝臻,张以谟.物体三维信息测量技术综述[J].光电子.激光,2004,15(2):248-254. 被引量:55
  • 9刘玉兰,葛庆平.一种间接提取轮廓特征点的算法[J].计算机工程与应用,2004,40(10):51-52. 被引量:18

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部