期刊文献+

基于表面二维PCA重构图像的刀具磨损分形特征研究 被引量:2

Fractal Analysis of PCA Reconstruction for Tool Wear Monitoring
下载PDF
导出
摘要 根据加工表面纹理图像与刀具几何形状之间的内在联系,提出利用计算机视觉技术进行刀具磨损状态监测,设计了基于表面微观纹理图像的刀具磨损状态监测实验系统。提出从二维PCA重构图像中提取分形特征值来判断刀具的磨损状态,给出了二维PCA图像重构算法。理论分析和实验证明:PCA重构图像消除了原始图像信息中的冗余和噪声,从重构图像中提取出来的分形布朗运动维数与刀具磨损有着很强的相关性,可以间接判断刀具磨损情况,从而达到对刀具状态进行监测的目的。 In order to take advantage of computer vision technology for cutting tool condition monitoring, the experimental system for state monitoring of a cutting tool is designed, and the image processing technology is introduced into the condition monitoring of cutting tool wear. A new method for judging the cutting tool state is proposed by extracting the fractal character. Both theoretical analysis and experimental results prove that the algorithm can extract the principal components, reconstruct the images, and eliminate the redundancy and noise. The fractal Brownian motion dimension which is extracted from the reconstructed images has a strong correlation with tool wear, and the cutting tool wear can be estimated indirectly. Therefore, the objective of monitoring the cutting tool condition is achieved. By this algorithm, the fractal dimension of Brownian motion can be used to express the trend of the tool wear effectively.
出处 《机械科学与技术》 CSCD 北大核心 2010年第3期395-398,403,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家重点基础研究发展计划(973)项目(2009CB724406) 陕西省教育厅研究计划项目(07JK335) 陕西省重点学科建设专项资金项目(2008-171)资助
关键词 加工表面图像 主分量分析 刀具磨损监测 分形布朗运动维数 cutting surface texture PCA( principal component analysis) tool wear fractal Brownian motiondimension
  • 相关文献

参考文献16

  • 1Mannan M A, et al. Application of image and sound analysis techniques to monitor the condition of cutting tools. [ J ]. Pattern Recognition Letter, 2000,21:969 - 979.
  • 2Kassim A A, et al. Texture analysis using fractals for tool wear monitoring [A]. Image Processing Praceedings, 2002 International Conference on Publication [C], 2002, ( 3 ) : 105 - 108.
  • 3Kashiwagi H, Nagayama Y, Shibuta K. Estimation of tool wear by use of image processing of cutting dust [ A ]. SICE Annual Conference[ C] , 2003.
  • 4Castejon M, Alegre E, Barreiro J, et al. On-line tool wear monitoring using geometric descriptors from digital images[J]. Inter. national Journal of Machine Tools & Manufacture , 2007, 47 : 1847 - 1853.
  • 5Li P Y, Hao C Y, Zhu S W. Machine tools wear condition detection based on wavelet packet[ A]. Proceedings of the Sixth In. ternational Conference on Machine Learning and Cybernetics[ C], Hong Kong, 2007.
  • 6Berthiaux H, Mosorov V, Tomczak L. Principal component analysis for charactefising homogeneity in powder mixing using image processing techniques[ J]. Chemical Engineering and Processing, 2006,45:397 - 403.
  • 7Bonifazzi C, et al. Principal component analysis of scintimammographic images[J]. Physica Medica, 2006,21 (10) :91 - 93.
  • 8Huang J. Multi-way methods in image analysis: relationship and application [ J ]. Chemometrics and Intelligent Laboratory System, 2003,66 : 141 - 158.
  • 9Chatterjee A. An introduction to the proper orthogonal decomposition. [J]. Current Science, 2000,78 (7) :808-817.
  • 10Luis Malagon-Borja, Fuentes O, Object detection using image reconstruction with PCA [ J ]. Image and Vision Computing, 2009,27:2 - 9.

同被引文献9

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部