期刊文献+

部分W-分离正交语音信号的盲分离方法 被引量:1

Blind Separation for Partial W-Disjoint Orthogonal Speech Signals
下载PDF
导出
摘要 在W-分离正交性假设的语音盲分离方法中,由于没有考虑多个源信号同时存在的情况,导致分离信号中不可避免地存在音乐噪声。针对这种部分W-分离正交情况,提出了基于信道估计的语音盲分离方法。该方法先检测只有一个源信号存在的时频点并进行归一化处理,使得处理后的结果与频率无关,克服了W-分离正交性假设的不足以及频率置换问题,通过K-means聚类估计出信道,再结合信号子空间方法重构源信号。仿真结果表明,提出的方法可以有效减少分离语音中的音乐噪声,与典型的时频二元掩蔽方法相比,其平均信号失真比提高3.02dB,同时平均信干比提高4.61dB。 In blind speech separation methods based on the assumption of W-disjoint orthogonality (W-DO), musical noise is inevitable in separated signals because the assumption does not include the case of existing multiple source signals in the time-frequency domain. A blind speech separation method based on channel estimation is proposed for partial approximate W-disjoint orthogonality. The time-frequency cells with only one source are detected and normalized to be independent of frequency, which overcomes not only the shortcoming of W-DO property but also the frequency permutation problem, and then the channel estimation is obtained by K-means clustering. Finally, signal subspace method is exploited to reconstruct sources. Simulation results demonstrate that the novel method can effectively reduce the musical noise in the separated speech signals, and it outperforms the typical time frequency binary masking method, the averaged signal to distortion ratio (SDR) is improved by 3.02 dB and the averaged signal to interference ratio (S/R) is improved by 4.61 dB.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2010年第2期186-190,共5页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60672157 60672158)
关键词 信道估计 部分W-分离正交 主分量分析:语音分离 channel estimation partial W-disjoint orthogonality principal component analysis speech separation
  • 相关文献

参考文献10

  • 1HAYKIN S. Unsupervised adaptive filtering, volume 1: blind source separation[M]. Canada: John Wiley & Sons, 2000.
  • 2傅彦,周俊临.基于无监督学习的盲信号源分离技术研究[J].电子科技大学学报,2004,33(1):63-66. 被引量:8
  • 3徐舜,刘郁林,朱行涛.采用二阶特征窗的语音盲分离方法[J].电子科技大学学报,2008,37(3):374-377. 被引量:5
  • 4RICKARD S, YILMAZ Z. On the approximate W-disjoint orthogonality of speech[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Orlando: IEEE Computer Society, 2002: 529-532.
  • 5ARAKI S, SAWADA H, MUKAI R, et al. Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors[J]. Signal Processing, 2007, 87(8): 1833- 1847.
  • 6KIM M, CHOI S. ICA-based clustering for resolving permutation ambiguity in frequency domain convolutive source separation[C]//Proceedings of the 18th International Conference on Pattern Recognition. Washington: IEEE Computer Society, 2006: 950-954.
  • 7RAKI S A, MAKINO S, SAWADA H, et al. Reducing musical noise by a fine-shift overlap-add method applied to source separation using a time-frequeney mask[C]// Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Philadelphia: IEEE Computer Society, 2005, 3: 81-84.
  • 8AISSA-EL-BEY A, ABED-MERAIM K, GRENIER Y. Underdetermined blind source separation of audio sources in time-frequency domain[C]//Proceedings of the Signal Processing with Adaptive Sparse Structured Representation. Rennes: ACTES, 2005:100-113.
  • 9WINTER S, KELLERMANN W, SAWADA H, et al. MAP-based underdetermined blind source separation of convolutive mixtures by hierarchical clustering and 11-norm minimization[J]. EURASIP Journal on Applied Signal Processing, 2007, 2007(1): 81-81.
  • 10FEVOTTE C, GRIBONVAL R, VINCENT E. BSS EVAL toolbox user guide[DB/OL]. [2008-06-21]. http://www. irisa.fr/metiss/bss eval/.

二级参考文献12

  • 1[1]Bell A J, Sejinowski T J. An information-maximization approach to blind separation and blind deconvolution[J]. Neutral Computation, 1995, 7(6): 1 129-1 159
  • 2[2]Tong L, Liu R, Soon V C, et al. Indeterminacy and identifiability of blind identification[J]. IEEE Trans. on Circuits and Systems, 1991, 38(5): 499-506
  • 3[3]Comon P. Independent component analysis, a new concept?[J]. Signal Processing, 1994, 36(3): 287-314
  • 4[4]Jutten C, Herault J. Blind separation of sources Part I: an adaptive algorithm based on neuromimetic architecture[J]. Signal Processing, 1991, 24(1): 1-10
  • 5[5]Cardoso J F, Laheld B. Equivariant adaptive source separation[J]. IEEE Trans. Signal Processing, 1996, 44(1): 3 017-3 030
  • 6[6]Cardoso J F. Blind signal separation: Statistical Principle[J]. Proc. IEEE, 1998, 86(10): 2 009-2 025
  • 7HAYKIN S. Unsupervised adaptive filtering, volume Ⅰ: blind source separation[M]. Canada: John Wiley & Sons Ltd, 2000.
  • 8BUCHNER H, AICHNER R, KELLERMANN W. A generalization of blind source separation algorithms for convolutive mixtures based on second-order statistics[J]. IEEE Traas on Speech and Audio Processing, 2005, 13(1): 120-134.
  • 9CHOI S, CICHOCKI A. Algebraic differential decorrelation for nonstationary source separation[J]. Electronics Letters, 2001, 37(23): 1414-1415.
  • 10CARDOSO J E Multidimensional independent component analysis[C]//In Proc ICASSP. [S.l.]: [s.n.], 1998.

共引文献11

同被引文献15

  • 1Huang Kaibin, Andrews J G, Heath R W, et al. Spatial interference cancellation for multi-antenna mobile ad hoc networks[ EB/OL]. (2008-07-11) [ 2010-08-15 ]. http ://arxiv. org/abs/0807. 1773.
  • 2Winters J H. Optimum combining in digital mobile radio with cochannel interference [ J 1. IEEE Journal on Selected Areas in Communications, 1984, SAC-2(4) : 528-539.
  • 3Hyvarinen A, Karhunen J, Oja E. Independent component analysis[ M]. New York: Wiley, 2001.
  • 4Cichocki A, Amari S I. Adaptive blind signal and image processing[ M ]. New York : Wiley, 2002.
  • 5Koldovsk Z, Tichavsk P. Methods of fair comparison of performance of linear ICA techniques in presence of additive noise [ C ] // ICASSP2006. Toulouse: IEEE Signal Processing Society, 2006: 685-688.
  • 6Huovinen T, Shahed A, Valkama M. Blind diversity reception and interference cancellation using ICA [ C ] //ICASSP2007. Honolulu: IEEE Signal Processing Society, 2007:685-688.
  • 7Cardoso J F, Laheld B H. Equivariant adaptive source separation[ J]. IEEE Trans on Signal Processing, 1996, 44(12) : 3017-3030.
  • 8Ristaniemi T, Huovinen T. Joint delay tracking and interference cancellation in DS-CDMA using successive ICA for oversaturated data[ C ]//ICA2004. Kyoto : [ s. n. ], 2004: 1173-1180.
  • 9Bingham E, Hyvarinen A. A fast fixed-point algorithm for independent component analysis of complex valued signals [J]. Journal of Neural Systems, 2000, 10(1) : 1-8.
  • 10Haykin S. Adaptive filter theory [ M ]. 3rd ed. Upper Saddle River: Prentice-Hall, 1996: 164-165.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部