期刊文献+

相关向量机及在说话人识别应用中的研究 被引量:13

Study to Speaker Recognition Using RVM
下载PDF
导出
摘要 对基于相关向量机和高斯混合模型的说话人识别算法的模型和特征空间进行了一系列的研究。与一些基于语音帧的说话人识别算法相比,该算法将GMM算法作为底层的语音特征提取,从而实现对语音整体上的处理,对常用的两种语音特征美尔频率倒频系数和瞬时频率的表现进行了对比研究;同时,该算法充分利用了相关向量机的所提供的高泛化性、核函数功能和结果的高稀疏性。基于Chains和AHUMADA两个专门用于说话人识别的语音库的仿真表明,该算法在减少相对误差和减少计算量方面有较大的优势。 A series of studies on speaker recognition algorithm based on relevance vector machine (RVM) and gaussian mixture model (GMM) was proposed in this paper. The sparseness and probability prediction of RVM make the algorithm suitable for speaker recognition in applications. The robust speech features based on GMM are investigated. In contrast to the most current systems based on frame-level discrimination, the approach has two outstanding merits. The first is the system provides direct discrimination between whole sequences by combining GMM as underlying generative models in feature-space. The paper focused on two main feature space: mel-frequency cepstrum coefficient (MFCC) and instantaneous frequencies (IF). The second combines the high generalization, kernel tricks, and sparser performance of RVM to generate more robust classification results and to reduce the computational complexity. The simulations using the Chains database and the AHUMADA database show that the proposed algorithm outperforms the other systems on reducing the relative error rates and reducing the computational complexity in high dimensionality space and big scale data.
作者 杨成福 章毅
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2010年第2期311-315,共5页 Journal of University of Electronic Science and Technology of China
基金 国家863计划(2007AA01Z321) 四川省教育厅自然科学重点项目(08ZA037)
关键词 高斯分布 GMM超向量核 瞬时频率 相关向量机 语音分析 gaussian distribution GMM super-vector kernel, instantaneous frequencies relevance vector machine speech analysis
  • 相关文献

参考文献12

  • 1CAMPBELL J P. Speaker recognition: a tutorial[J]. Proc IEEE, 1997, 85(9): 1437-1462.
  • 2CAMPBELL W M, STUR/M D E, REYNOLDS D A. Support vector machines using GMM supervectors for speaker verification[J]. IEEE Signal Processing Letters, 2006, 13(5): 308-311.
  • 3REYNOLDS D A, QUATIERI T F, DUNN R. Speaker verification using adapted gaussian mixture models[J]. Dig Signal Process, 2000, 10(1-3): 19-41.
  • 4WAN V. Speaker verification using support vector machines [D]. Sheffield, U.K: Univ Sheffield, 2003.
  • 5KINNUEN T. Spectral features for automatic textindependent speaker recognition[D]. Joensuu, Finland: Univ Joensuu, 2003.
  • 6BIMBOT F, MAGRIN C I, MATHAN L. Second-order statistical measures for text-independent speaker identification[J]. Speech Commun, 1995, 17(1-2): 177-192.
  • 7TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244.
  • 8VAPNIK V. Statistical learning theory[M]. New York: John Wiley, 1998.
  • 9GRIMALDI M, CUMMINS F. Speaker identification using instantaneous frequencies[J]. IEEE Transaction on Audio, Speech, and Language Processing, 2008, 16(6): 1097-1111.
  • 10ORTEGA G J, GONZALEZ R J, MARRERO A V, et al. A large speech corpus in Spanish for speaker characterization and identification[J]. Speech Communication, 2000, 31: 255-264.

二级参考文献1

共引文献1

同被引文献121

  • 1刘遵雄,张德运,孙钦东,徐征.基于相关向量机的电力负荷中期预测[J].西安交通大学学报,2004,38(10):1005-1008. 被引量:22
  • 2奚建荣.基于局域网的指纹考勤系统的设计实现[J].现代电子技术,2006,29(5):98-100. 被引量:10
  • 3王晓丹,孙东延,郑春颖,张宏达,赵学军.一种基于AdaBoost的SVM分类器[J].空军工程大学学报(自然科学版),2006,7(6):54-57. 被引量:22
  • 4苏毅,吴文虎,郑方,等.基于支持向量机的语音识别研究[C].第六届全国人机语音通讯学术会议,深圳,2001.
  • 5TANG W H,WU Q H. Condition monitoring and assessment of power transformers using computational intelligence[Ml. New York, USA : Springer-Verlag Press, 2011 : 95-104.
  • 6VAPNIK V N. The nature of statistical learning theory[M]. New York, USA : Springer-Verlag Press, 1995 : 181-218.
  • 7CRISTIANINI N,SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods [M]. New York, USA : Cambridge University Press, 2000 : 93-124.
  • 8I TIPPING M E. The relevance vector machine [J]. Advances in Neural Information Processing Systems,2001 (12) : 652-658.
  • 9TIPPING M E. The relevance vector machine[J]. Advances in Neural Information Processing Systems,2001 (12) : 652-658.
  • 10TIPPING M E. Sparse Bayesian learning and the relevance vector machine [J]. Journal of Machine Learning Research, 2001,1 (3) :211-244.

引证文献13

二级引证文献174

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部