期刊文献+

Modulational Instability and Variable Separation Solution for a Generalized (2+1)-Dimensional Hirota Equation

Modulational Instability and Variable Separation Solution for a Generalized (2+1)-Dimensional Hirota Equation
下载PDF
导出
摘要 It is demonstrated by the linear modulational instability analysis that a generalized (2+1)-dimensional Hirota equation is modulationally stable. Then, a B?cklund transformation (BT) is obtained by means of the truncated Painlevé approach. Using the BT, the model is transformed to a system of equations, which finally leads to a special variable separation solution with arbitrary functions. It is demonstrated by the linear modulational instability analysis that a generalized (2+1)-dimensional Hirota equation is modulationally stable. Then, a B?cklund transformation (BT) is obtained by means of the truncated Painlevé approach. Using the BT, the model is transformed to a system of equations, which finally leads to a special variable separation solution with arbitrary functions.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第3期1-4,共4页 中国物理快报(英文版)
基金 Supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20070248120, SRF for ROCS, SEM, and the National Natural Science Foundation of China under Grant Nos 10735030 and 10905038.
关键词 Mathematical physics Statistical physics and nonlinear systems Mathematical physics Statistical physics and nonlinear systems
  • 相关文献

参考文献22

  • 1Maccari A 1998 J. Math. Phys. 39 6547.
  • 2Hirota R 1973 J. Math Phys. 14 805.
  • 3Xu G Q and Li Z B 2005 Comput. Algebra and Geometric Algebra with Applications 3519 179.
  • 4Zhang H Q 2009 Chaos Solitons and Fractals 39 1020.
  • 5Chen Y and Yan Z Y 2006 Chaos Solitons and Fractals 29 948.
  • 6Fan E G 2003 Chaos Solitons and Fractals 16 819.
  • 7Jiao X Y and Lou S Y 2009 Chin. Phys. Lett. 26 040202.
  • 8Zhao S L, Zhang D J and Chen D Y 2009 Chin. Phys. Lett. 26 030202.
  • 9Gao Y, Tang X Y and Lou S Y 2009 Chin. Phys. Lett. 26 030502.
  • 10Yang J R and Mao J J 2008 Chin. Phys. Lett. 25 1527.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部