摘要
Using the single-atom induced dipole moment under strong field approximation as a source, we suggest a model to simulate the macroscopic high-order harmonic generation (HHG) from the mixed gases (He and Ne) interacting with intense infrared laser by solving the three-dimensional Maxwell's equation of the harmonic field. Regular destructive interference (DI) and constructive interference (CI) are observed in the macroscopic HHG spectra when the gas jet is put at a good phase-matching position. A semiclassical model of short and long electron trajectories is applied to interpret the DI and CI of HHG qualitatively.
Using the single-atom induced dipole moment under strong field approximation as a source, we suggest a model to simulate the macroscopic high-order harmonic generation (HHG) from the mixed gases (He and Ne) interacting with intense infrared laser by solving the three-dimensional Maxwell's equation of the harmonic field. Regular destructive interference (DI) and constructive interference (CI) are observed in the macroscopic HHG spectra when the gas jet is put at a good phase-matching position. A semiclassical model of short and long electron trajectories is applied to interpret the DI and CI of HHG qualitatively.
基金
Supported by the National Natural Science Foundation of China under Grant No 10674112, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20096203110001, the Foundation of Center of Theoretical Nuclear Physics of National Laboratory of Heavy Ion Accelerator of Lanzhou, and Foundation of Northwest Normal University under Grant No NWNU-KJCXGC-03-62.