期刊文献+

Improved Microfluidic Coupled-Cavity Waveguides for Slow Light Transmission 被引量:1

Improved Microfluidic Coupled-Cavity Waveguides for Slow Light Transmission
下载PDF
导出
摘要 We present a method based on the selective liquid infiltration in air holes to produce slow light in a coupled-cavity waveguide structured by two-dimensional photonic crystal and analyze the slow light propagation in the coupled-cavity waveguide with triangular lattice. The group velocity profile of different coupled-cavity waveguides, obtained by the selective liquid infiltration in the holes between the cavities in waveguide and the increased radius of the first row of holes adjacent to the waveguide, is evaluated by using both the plane-wave expansion method and a tight binding model. We determine the optimal parameters to reduce the group velocity. Using a simpler coupled-cavity waveguide structure we obtain smaller group velocity compared to most investigations. We present a method based on the selective liquid infiltration in air holes to produce slow light in a coupled-cavity waveguide structured by two-dimensional photonic crystal and analyze the slow light propagation in the coupled-cavity waveguide with triangular lattice. The group velocity profile of different coupled-cavity waveguides, obtained by the selective liquid infiltration in the holes between the cavities in waveguide and the increased radius of the first row of holes adjacent to the waveguide, is evaluated by using both the plane-wave expansion method and a tight binding model. We determine the optimal parameters to reduce the group velocity. Using a simpler coupled-cavity waveguide structure we obtain smaller group velocity compared to most investigations.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第3期166-169,共4页 中国物理快报(英文版)
关键词 Electronics and devices Optics quantum optics and lasers Nanoscale science and low-D systems Electronics and devices Optics, quantum optics and lasers Nanoscale science and low-D systems
  • 相关文献

参考文献17

  • 1Alexander V U, Forrest G and Chang-Hasnain C J 2006 IEEE Photon. Technol. Lett. 18 731.
  • 2Okawachi Y, Foster M A, Sharping J E and Gaeta A L 2006 Opt. Express 14 2317.
  • 3Tucker R S, Ku P C and Chang-Hasnain C J 2005 IEEE J. Lightwave Technol. 23 4046.
  • 4Soljacic M and Joannopoulos J D 2004 Nature Mater. 3 211.
  • 5Vlasov Y A, OBoyle M, Hamann H F and McNab S J 2005 Nature 438 65.
  • 6Gersen H, Karlc T J, Engelen R J P, Bogacrts W, Korterik J P, van Hulst N F, Krausss T F and Kuiper L 2005 Phys. Rev. Lett. 94 073903.
  • 7Li C H, Tian H P, Zheng C and Ji Y F 2007 Opt. Commun. 279 214.
  • 8Prandsen L H, Lavrinenko A V, Fage-Pedersen J and Borel P I 2004 Opt. Express 14 9444.
  • 9Li J T, White T P, Ofaolain L, Gomez-Iglesias A and Krauss T F 2008 Opt. Express 16 6227.
  • 10Moreolo M S, Morra V and Cincotti G 2008 J. Opt. A: Pure Appl. Opt. 10 064002.

同被引文献9

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部