期刊文献+

Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors 被引量:3

Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors
下载PDF
导出
摘要 A new hysteretic nonlinear model of quad iced bundle conductors is constructed. The bifurcation equation is obtained by applying the undetermined fundamental frequency method of the complex normal form. The transition set and bifurcation diagrams for the singularity are presented. Then the corresponding relations between the unfolding parameters and the system parameters are given, and the sensitivity parameters and its range of values are obtained to analyze and to control the galloping of the quad iced bundle conductor. A new hysteretic nonlinear model of quad iced bundle conductors is constructed. The bifurcation equation is obtained by applying the undetermined fundamental frequency method of the complex normal form. The transition set and bifurcation diagrams for the singularity are presented. Then the corresponding relations between the unfolding parameters and the system parameters are given, and the sensitivity parameters and its range of values are obtained to analyze and to control the galloping of the quad iced bundle conductor.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第3期208-211,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 10872141, the National Basic Research Program of China under Grant No 2007CB714000, and the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20060056005.
关键词 Fluid dynamics Mathematical physics Electronics and devices Fluid dynamics Mathematical physics Electronics and devices
  • 相关文献

参考文献20

  • 1Den Hartog J P 1932 Trans. AIEE 51 1074.
  • 2Simpson A 1965 Proc. IEEE 112 315.
  • 3Blevins R D and Iwan W D 1974 J. Appl. Mech. 41 1113.
  • 4Blevins R D 1974 PhD dissertation (Pasadena: California University).
  • 5Yu P et al 1993 J. Eng. Math. 119 2426.
  • 6Yu P, Desai Y M et al 1993 J. Eng. Math. 119 2404.
  • 7Yu P, Shah A H et al 1992 J. Appl. Mech. 59 140.
  • 8Yu P, Popplewell et al 1991 J. Appl. Mech. 58 784.
  • 9Desai Y M, Yu P et al 1995 Comput. Struct. 57 407.
  • 10Farzaneh M 2008 Atmospheric Icing of Power Networks (London: Springer) P 218.

同被引文献27

  • 1王少华,蒋兴良,孙才新.输电线路导线舞动的国内外研究现状[J].高电压技术,2005,31(10):11-14. 被引量:152
  • 2Denhartog J P.Transmission line vibration due to sleet [J].Electrical Engineering, 1932, 51(6): 413-413.
  • 3Nigol O, Buchan P G.Conductor galloping part I: Den Hartog mechanism [J].Power Apparatus and Systems, IEEE Transactions on, 1981, 100(2): 699-707.
  • 4Nigol O, Buchan P G.Conductor galloping part I: Torsional mechanism [J].Power Apparatus and Systems, IEEE Transactions on, 1981, 100(2): 708-720.
  • 5Yu P, Shah A H, Popplewell N.Inertially coupled galloping of iced conductors [J].Journal of Applied Mechanics, 1992, 59(1), 140-145.
  • 6Luongo A, Zulli D, Piccardo G.Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables [J].Journal of Sound and Vibration, 2008, 315 (2008): 375-393.
  • 7Lee C L, Perkins N C.Nonlinear oscillations of suspended cables containing a two-to-one internal resonance [J].Nonlinear Dynamics, 1992, 3:465-490.
  • 8Benedettini F, Rega G, Alaggio R.Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions [J].Journal of Sound and Vibration, 1995, 182(5): 775-798.
  • 9Nayfeh A H, Arafat H N, Chin C M, et al.Multimode interactions in suspended cables [J].Journal of Vibration and Control, 2002, 8(3): 337-387.
  • 10Qin Z H, Chen Y S, Zhan X, et al.Research on the galloping and anti-galloping of the transmission line [J].International Journal of Bifurcation and Chaos, 2012, 22 (2): 1250038.

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部