期刊文献+

Thin Film Flow of a Second Grade Fluid over a Stretching/Shrinking Sheet with Variable Temperature-Dependent Viscosity 被引量:3

Thin Film Flow of a Second Grade Fluid over a Stretching/Shrinking Sheet with Variable Temperature-Dependent Viscosity
下载PDF
导出
摘要 Effects of variable viscosity on the flow and heat transfer in a thin film on a horizontal porous stretching sheet are analyzed. The steady boundary layer equations for momentum and thermal energy are simplified by using similarity transformations. The resulted and coupled nonlinear differential equations are solved by Homotopy analysis method. The results are presented graphically to interpret various physical parameters appearing in the problem. Effects of variable viscosity on the flow and heat transfer in a thin film on a horizontal porous stretching sheet are analyzed. The steady boundary layer equations for momentum and thermal energy are simplified by using similarity transformations. The resulted and coupled nonlinear differential equations are solved by Homotopy analysis method. The results are presented graphically to interpret various physical parameters appearing in the problem.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第3期212-215,共4页 中国物理快报(英文版)
关键词 Soft matter liquids and polymers Fluid dynamics Mathematical physics Soft matter, liquids and polymers Fluid dynamics Mathematical physics
  • 相关文献

参考文献37

  • 1Lavrik N V, Tipple C A, Sepaniak M J Datskos D 2001 Biomed. Mierodev. 3 35.
  • 2Mahmood M, Asghar S and Hossain M A 2007 Heat Mass Transfer 44 165.
  • 3Wang C Y 2008 Int. J. Eng. Sci. 46 391.
  • 4Dandapat B S, Ray P C 1990 Int. J. Nonlin. Mech. 25 569.
  • 5Wang C 2006 Heat Mass Transfer 42 759.
  • 6Dandapat B S, Santra B and Vajravelu K 2007 Int. J. Heat Mass Transfer. 50 991.
  • 7Khan M, Ali S H, Hayat T and Fetecau C 2008 Int. J. Nonlinear Mech. 43 302.
  • 8Nadeem S, Hayat T, Hutter K and Asghar S 2004 Z. Angew Math. Phys. 55 626.
  • 9Nadeem S, Hayat T, Hanif K and Asghar S 2004 Mechanica 39 483.
  • 10Nadeem S, Khan M, Hayat T and Siddiqui A M 2005 Math. Comput. Modelling 41 629.

同被引文献32

  • 1S. Asghar,M. Mudassar Gulzar,M. Ayub.Effects of partial slip on flow of a third grade fluid[J].Acta Mechanica Sinica,2006,22(5):393-396. 被引量:6
  • 2Weyl H.On the differential equations of the simplest boundary-layer problems[J].Annals of Mathematics,1942,43(2):381-407.
  • 3Wang C Y.Flow due to a stretching boundary with partial slip:an exact solution of the Navier-Stokes equations[J].Chemical Engineering Science,2002,57(17):3745-3747.
  • 4Merkin J H,Pop I.The forced convection flow of a uniform stream over a flat surface[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(9):3602-3609.
  • 5Hayat T,Iqbal Z,Mustafa M,et al.Momentum and heat transfer of an upper-convected Maxwell fluid over a moving surface with convective boundary conditions[J].Nuclear Engineering and Design,2012,252(11):242-247.
  • 6Aziz A.A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition[J].Communications in Nonlinear Science and Numerical Simulation,2009,14(4):1064-1068.
  • 7Ishak A,Yacob N A,Bachok N.Radiation effects on the thermal boundary layer flow over a moving plate with convective boundary condition[J].Meccanica,2011,46(4):795-801.
  • 8Bataller R C.Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition[J].Applied Mathematics and Computation,2008,206(2):832-840.
  • 9Mahmoud M A A,Megahed A M.MHD flow and heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet with variable fluid properties[J].Canadian Journal of Physics,2009,87(10):1065-1071.
  • 10Subhashini S V,Samuel N,Pop I.Double-diffusive convection from a permeable vertical surface under convective boundary condition[J].International Communications in Heat and Mass Transfer,2011,38(9):1183-1188.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部