期刊文献+

基于特征向量子空间距离的MPC控制器性能诊断 被引量:3

Performance diagnosis of model predictive controller based on eigenvector subspace distance
下载PDF
导出
摘要 针对当前MPC控制器性能评价方法无法定位性能下降源的问题,提出一种基于子空间距离聚类的控制器性能诊断新方法。新方法引入特征向量子空间描述各性能类别的特征,建立子空间距离来度量当前实时数据和已知类别数据的相似性,以距离为度量函数确定监控数据对应的类别,定位引起MPC控制器性能下降的原因。在Wood-Berry塔上的仿真结果验证了新方法的有效性。 Aiming at the shortcoming that current research on controller performance assessment can't isolate the root causes for the poor performance, a novel method of model predictive controller performance diagnosis based on distance clustering was proposed. The concept of eigenvector subspace which can describe the characteristic of various subspace was presented, classification could be made by calculating the distances between the current subspace and the predefined ones, and then it can correctly locate the causes contributed to the performance variation. The simulation results on the Wood-Berry validate the efficiency of the novel method.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第1期160-163,169,共5页 Journal of China University of Petroleum(Edition of Natural Science)
基金 山东省自然科学基金项目(Y2007G49) 中国石油大学研究生创新基金项目(S2008-18)
关键词 预测控制 性能诊断 性能评价 距离聚类 predictive control performance diagnosis performance assessment distance clustering
  • 相关文献

参考文献12

  • 1QIN S J, BADGWELL T A. A survey of industrial model predictive control technology [ J ]. Control Engineering Practice, 2003,11 (7) :733-764.
  • 2JELALI M. An overview of control performance assessment technology and industrial applications [ J ]. Control Engineering Practice, 2006,14 (5) :441-466.
  • 3PATWARDHAN R S, SHAH S L, QI K Z. Assessing the performance of model predictive controllers [ J ]. The Canadian Journal of Chemical Engineering, 2002,80 ( 5 ) : 954-966.
  • 4QIN S J. Control performance monitoring--a review and assessment [ J]. Computers and Chemical Engineering, 1998,23 (2) : 178-186.
  • 5SCHAFER Jochen, CINAR Ali. Multivariable MPC system performance assessment, monitoring and diagnosis [J]. Journal of Process Control, 2004,14(2) :113-129.
  • 6HARRIS T J. Assessment of control loop performance [J]. CanJChem, 1989,67(10):856-861.
  • 7张彤,王庆林.基于MV基准界的多变量控制系统性能评价方法[J].北京理工大学学报,2007,27(8):689-694. 被引量:4
  • 8YU Jie, QIN S J. Statistical MIMO controller performance monitoring, Part I: data-driven covariance benchmark [ J ]. Journal of Process Control, 2008,18 ( 3/4 ) : 277 -296.
  • 9YU Jie, QIN S J. Statistical MIMO controller performance monitoring, Part II : performance diagnosis [ J ]. Journal of Process Control, 2008,18 ( 3/4 ) :297-319.
  • 10QIN S J, YU Jie. Recent developments in multivariate controller performance monitoring [ J ]. Journal of Process Control, 2007,17 (3) :221-227.

二级参考文献14

  • 1Harris T J. Assessment of control loop performance [J]. The Canadian Journal of Chemical Engineering, 1989, 67: 856-861.
  • 2Huang B, Shah S L, Kwok K Y. Good, bad or optimal? performance assessment of MIMO processes[J]. Automatica, 1997,33(6): 1175 - 1183.
  • 3Harris T J, Boudreau F, MacGregor J F. Performance assessment of multivariable feedback controllers [J]. Automatica, 1996, 32(11): 1505 - 1518.
  • 4Huang B, Shah S L. The unitary interactor matrix and its estimation from closed-loop data [J]. Journal of Process Control, 1997,7(3): 195-207.
  • 5Kadali R, Huang B. Multivariable control performance assessment without interactor matrix[C] // Proceedings of IFAC Advanced Control of Chemical Processes, Hong Kong, China: [s.n. ],2003:61 -66.
  • 6Ko B S, Edgar T F. Performance assessment of multivariable feedback control systems [J ]. Automatica, 2001, 37(5) : 899- 905.
  • 7McNabb C A, Qin S J. Projection based MIMO control performance monitoring: I-covariance monitoring in state space[J]. Journal of Process Control, 2003, 13(8): 739 - 757.
  • 8Harris T J, Seppala C T, Desborough L D. A review of performance monitoring and assessment techniques for univariate and multivariate control systems [J]. Journal of Process Control, 1999, 9(1): 1 - 17.
  • 9Kadali R, Huang B, Tamayo E C. A case study on performance analysis and troubling shooting of an industrial model predictive control system[C]//Proceedings of the American Control Conference. San Diego, California, US: [s. n.], 1999: 642-646.
  • 10Shah S L, Patwardhan R, Huang B. Multivariate controller performance assessment : methods, applications and challenges, Chemical Process Control Conperance [R]. Arizona, US: [s.n.], 2002: 190-207.

共引文献3

同被引文献73

  • 1夏春明,郑建荣.基于协方差ICA分析的多重振荡源分离方法[J].控制与决策,2005,20(12):1429-1433. 被引量:2
  • 2谢磊,张建明,王树青.基于统计信号重构的传感器故障诊断[J].化工学报,2006,57(10):2343-2348. 被引量:5
  • 3徐涛,王祁.基于模式识别的传感器故障诊断[J].控制与决策,2007,22(7):783-786. 被引量:14
  • 4Harris T J. Assessment of control loop performance[J]. Ca-nadian Journal of Chemical Engineering, 1989, 67 (5):856-861.
  • 5Harris T J, Boudreau F, Macgregor J F. Performance as-sessment of multivariate feedback controllers[J]. Automatica,1996,32 (11):1505-1518.
  • 6Harris T J, Seppala C T,Desborough L D. A review of per-formance monitoring and assessment techniques for univariateand multivariate control systems[J]. Journal of Process Con-trol, 1999, 9(1):1-17.
  • 7Huang B,Shah S L, Fujii H. The unitary interactor matrixand its estimation using closed-loop data [ J ]. Journal ofProcess Control, 1997 ,7(3):195-207.
  • 8Huang B, Shah S L,Kwok K Y. Good,bad or optimal? Per-formance assessment of multivariable processes [J]. Auto-matica, 1997,33 (6):1175-1183.
  • 9Darby M L,Nikolaou M. MPC: Current practice and chal-len.ges[Jj. Control Engineering Practice, 2012, 20(4) ; 328-342.
  • 10Patwardhan R S,Shah S L. Issues in performance diagnos-tics of model-based controllers[J]. Journal of Process Con-trol, 2002,12(3):413-427.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部