期刊文献+

基坑变形曲线拟合与时序动态分析 被引量:1

THE PIT DEFORMATION CURVE FITTING AND TIME-SERIES DYNAMIC ANALYSIS
下载PDF
导出
摘要 深基坑变形是一个动态的相互依存的过程。在基坑开挖与施工过程中,根据变形观测数据用曲线拟合理论与时序分析方法建立动态预测预报模型,并随着新数据的加入适时修改模型参数。该模型不要求考虑复杂的变形影响因素。工程实例研究表明:该模型预测变形值,其短期误差一般情况下小于5%,较适合于基坑的变形测量与预报。 Horizontal deformation of the deep pit is a dynamic process.During the excavation and construction,a dynamic combined prediction model,in which curve fitting theory and time-series analysis model is adopted,is established on the basis of measured data.With the addition of new deformation datum,the model parameters are continuously modified.The model is not asked to consider complex factors the deformationof.The practical research has showed that the error between measure and prediction value is mostly below 5 percent in short-term.The model is more appropriate in the pit of deformation measurement and prediction.
出处 《山东农业大学学报(自然科学版)》 CSCD 北大核心 2010年第1期122-124,共3页 Journal of Shandong Agricultural University:Natural Science Edition
基金 国家"十一五"科技支撑计划课题(2006BAK02A23)
关键词 深基坑 水平变形 曲线拟合 时序分析 Deep pit horizontal deformation curve fitting time-series analysis
  • 相关文献

参考文献4

二级参考文献10

共引文献132

同被引文献10

  • 1黎昵,岳建平,段鹏.改进模糊神经网络模型及其在大坝监测中的应用[J].水电自动化与大坝监测,2007,31(1):74-76. 被引量:19
  • 2Deng X S,,Wang X Z.Incremental learning of dynamic fuzzyneural networks for accurate system modeling. Fuzzy Sets and Systems . 2009
  • 3Lin D,,Wang X Y,Nian F Z,et al.Dynamic fuzzy neuralnetworks modeling and adaptive backstepping tracking controlof uncertain chaotic systems. Neurocomputing . 2010
  • 4Juang C F,Lin Y Y,Tu C C.A recurrent self-evolvingfuzzy neural network with local feedbacks and its applicationto dynamic system processing. Fuzzy Sets and Systems . 2010
  • 5P.A. Mastorocostas,J.B. Theocharis.A recurrent fuzzy-neural model for dynamic system identification. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics . 2002
  • 6Gang Leng,Girijesh Prasad,Thomas Martin McGinnity.An on-line algorithm for creating self-organizing fuzzy neural networks. Neural Networks . 2004
  • 7Wang Ning,Meng Joo Er,Meng Xiaoyao.A fastand accurate online self-organizing scheme for parsi-monious fuzzy neural networks.. Neurocomput-ing . 2009
  • 8T G Barbounis,J B Theocharis.A locally recurrent fuzzy neuralnetwork with application to the wind speed prediction usingspatial correlation. Neurocomputing . 2007
  • 9刘为东,李东升,程丕.RBFNN在大坝变形长期预测中的应用[J].水电能源科学,2011,29(1):48-50. 被引量:3
  • 10陈伟清,田海涛,陈佳佳.工程建筑变形分析的灰色模型探讨[J].广西大学学报(自然科学版),2011,36(1):64-70. 被引量:15

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部