期刊文献+

淀粉酶前处理应用于猪粪沼气发酵的研究 被引量:8

Amylase Pretreatment of Pig Manure for Biogas Production
下载PDF
导出
摘要 沼气发酵经历了水解、产氢产乙酸和产甲烷三个阶段,若发酵原料是一些小分子水溶性物质,则产甲烷阶段将是整个过程的限制阶段,若发酵原料为大分子复杂有机物,则第一阶段便成了限制阶段。在实际应用中,沼气发酵的原料通常为复杂的大分子有机物,因此原料的水解反应速度决定了整个沼气发酵过程的速度。为消除水解阶段的限制,提高沼气发酵的效率,本实验尝试采用水解酶前处理技术,在猪粪沼气发酵前,先用淀粉酶预处理。实验结果表明经淀粉酶处理后,猪粪的TS和VS降解率,累积产气量,原料产气潜力,最大容积产气率,与对照组相比有明显的提高,其中经α-淀粉酶和γ-淀粉酶共同处理的TS和VS降解率分别提高了10.84%和11.11%、累积产气量提高了14.71%、原料产气潜力提高了14.7%、最大容积产气率提高了19.79%。 The process of biogas fermentation is divided into three steps including hydrolysis, acetogenesis and hydrogen formation and methane formation. When soluble organic matter is used as substrate, the step of methane formation will be rate-limiting step. If complex organic matter is used as substrate, the step of hydrolysis will be rate-limiting step. To overcome the limitation of hydrolysis, and improve the efficiency of biogas production from complex organic matter such as animal waste, domestic waste and agricultural residence, a way of hydrolase pretreatment in biogas fermentation was investigated. Results showed that when pig manure was hydrolyzed in advance by amylase, removal rate of TS and VS, accumulative biogas production, biogas production potentials and rates have been improved through amylase pre-treatment. Especially through α-amylase and γ-amylase pretreatment together, removal rate of TS and VS, as compared with control group, was increased by 10.84% and 11.11% respectively, accumulative biogas production increased by 14.71%, biogas production potential increased by 14.70%, and maximum biogas production rate increased by 19.79%.
出处 《环境科学与技术》 CAS CSCD 北大核心 2010年第4期117-121,共5页 Environmental Science & Technology
基金 昆明理工大学固体废弃物资源化国家工程中心资助
关键词 沼气发酵 水解酶 淀粉酶 前处理 biogas fermentation hydrolase amylase pretreatment
  • 相关文献

参考文献13

  • 1Toerien D F, Hattingh W H J. Anaerobic digestion I. The microbiology of anaerobic -gestion[J]. Water Research, 1967, 3(6) :386-457.
  • 2Lawrence A W, McCarty P L. Kinetics of Methane Fermentation in Anaerobic Waste Treatment in Technical Report, No 75[R]. Department. of Civ Eng, Stanford Univ: Palo Alto, California, 1967: 193.
  • 3Bryant M P. Microbial methane production- theoretical aspects[J]. J Anim Sci, 1979, 48(1):193-201.
  • 4张无敌,刘士清.厌氧消化过程的多功能性[J].天津微生物,1995(3):24-26. 被引量:14
  • 5Human M, Drtil M, Kalina A. Anaerobic stabilisation of sludge produced during municipal wastewater treatment by electrocoagulation[J].J Hazard Mater, 2006, 131(1-3) :163-9.
  • 6Goel R, Mino T, Satoh H, et al. Enzyme activities under anaerobic and aerobic conditions 'in activated sludge sequencing batch reactor[J]. Water Research, 1998, 32 (7) : 2081-2088.
  • 7Guellil A, Boualam M, Quiquampoix H, et al, Hydrolysis of wastewater colloidal organic matter by extracellular enzymes extracted from activated sludge floes[J]. Water Sci Technol, 2001, 43(6):33-40.
  • 8Ubukata Y. Kinetics and fundamental mechanisms of starch removal by activated sludge:hydrolysis of starch to maltose and maltotriose is the rate-determining step[J]. Water Science and Technology, 1999, 40(1 ): 61-68.
  • 9张无敌,宋洪川,尹芳,卢怡,徐庆贤,李建昌.牛粪在沼气发酵过程中的水解酶酶活变化研究[J].能源工程,2003,23(6):21-23. 被引量:17
  • 10张无敌,宋洪川,李建昌,韦小岿.水解酶提高猪粪沼气发酵产气率[J].太阳能学报,2002,23(5):674-677. 被引量:40

二级参考文献28

共引文献131

同被引文献105

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部