期刊文献+

减量式频集快速维护算法研究与实现

ON RAPID DECREMENTAL MAINTENANCE ALGORITHM FOR FREQUENT ITEMSET AND ITS IMPLEMENTATION
下载PDF
导出
摘要 在频集更新算法的研究中,关于数据集减量式的更新算法研究比较少。提出一种最小支持度和置信度不变,从事务数据库中删除一个事务数据集后,如何高效地生成变化后的事务数据库频集的算法。算法在如何充分利用以往挖掘过程中的信息,避免多次扫描数据集以及如何减少候选集的规模等方面进行了研究,给出了算法的实现。通过对实验结果的性能对比分析,表明算法是可行、有效的。 In study of the updating algorithm for frequent itemset,little research was made on updating algorithm of datasets in decremental form. This paper provides an algorithm for efficiently generating frequent itemset of the changed transaction database with the minimum support degree and confidence degree keeping unchanged while a transaction dataset is deleted from the transaction database. The algorithm explores various aspects encompassing how to make the best use of known information from previous mining processes, how to prevent from repeatedly scanning datasets and how to decrease the size of candidate sets, etc. The implementation of the algorithm is also given. It is manifested through the comparative analysis of the performances of experimental results, the algorithm is feasible and effective.
作者 郭有强
出处 《计算机应用与软件》 CSCD 2010年第3期97-99,130,共4页 Computer Applications and Software
基金 安徽省教育厅高校自然科学基金项目(KJ2008B84ZC KJ2009B060Z)
关键词 数据挖掘 关联规则 减量维护 剪枝 Data mining Association rules Decremental maintenance Pruning
  • 相关文献

参考文献5

二级参考文献14

  • 1易彤,徐宝文,吴方君.一种基于FP树的挖掘关联规则的增量更新算法[J].计算机学报,2004,27(5):703-710. 被引量:32
  • 2陈安龙,唐常杰,陶宏才,元昌安,谢方军.基于极大团和FP-Tree的挖掘关联规则的改进算法[J].软件学报,2004,15(8):1198-1207. 被引量:30
  • 3秦亮曦,史忠植.SFPMax——基于排序FP树的最大频繁模式挖掘算法[J].计算机研究与发展,2005,42(2):217-223. 被引量:26
  • 4[1]Agrawal R. Mining Association Rules Between Sets of Items in Large Database. Washington, DC:Proceedings of ACM SIGMOD Conference on Management of Data, 1993-05:207-216
  • 5[2]Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules.Santiago, Chile: Proceedings of the 20th International Conference on Very Large Databases, 1994-09:487-499
  • 6[3]Cheung D W. Maintenance of Discovered Association Rules in Large Databases:An Incremental Updating Technique. New Orleans,Louisana:Proceedings of the 12th International Conference on Data Engineering,1996:106-114
  • 7R Agrawal ,T ImielinSki, A Swami. Mining association rules between sets of items in large database. Proc. ACM SIGMOD Int. Conf. On management of Data,1993(2) :207-216.
  • 8J Han ,Y Fu. Discovery of multiple level association rules from large database. In proc of the 21st lnt'l Conf on Very. large Database( VLDB'95 ). Zurich : Morgan kaufruann, 1995,420 - 431.
  • 9R Skikant,R Agrawal. Mining generalized association rules. In proc of the 21 st lnt'l Conf on Very Large Database ( VLDB'95 ). Zurich:Morgan Kaufrnann, 1995,407 - 419.
  • 10J Han, et al. Mining Frequent patterns without Candidate Generation,(Slide). In:Proc:2000 ACM SIGMOD Int. Conf. On Management of Data, Dallas,Tx,2000 ( 5 ).

共引文献260

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部