期刊文献+

一种求解高维数据最佳鉴别向量的新算法 被引量:1

A NEW ALGORITHM FOR COMPUTING OPTIMAL DISCRIMINANT VECTORS IN CONDITION OF HIGH-DIMENSIONAL DATA
下载PDF
导出
摘要 针对线性鉴别分析LDA(Linear Discriminant Analysis)方法在高维人脸图像识别领域的应用,提出一种计算最佳鉴别向量的新算法,无需对高维图像数据进行降维预处理,直接计算最佳鉴别向量。算法得到的鉴别向量相互正交,与已有的算法得到的鉴别向量相比,具有更好鉴别性能。在ORL和VALID人脸数据库上的实验结果证明了本算法的有效性。 For applying the Linear Discriminant Analysis (LDA) method to high-dimensional image data, especially for face recognition, we present a novel method to compute the optimal discriminant vectors without dimension reduction pre-processing on high dimensional image data and can directly compute the optimal discriminant vectors. Discriminant vectors calculated through our method are mutually orthonormal, and have higher discriminating performance comparing with those discriminant vectors derived from existing algorithms. Experimental results on ORL and VALID databases verify the effectiveness of our algorithm.
出处 《计算机应用与软件》 CSCD 2010年第3期272-274,282,共4页 Computer Applications and Software
关键词 线性鉴别分析算法 人脸识别 高维图像数据 LDA algorithm Face recognition High-dimensional image data
  • 相关文献

参考文献10

  • 1Fukunaga K. Introduction to statistical pattern recognition[ M]. 2nd ed. New York : Academic Press, 1990.
  • 2Tian Q, Fainman Y, Lee SH. Comparison of statistical pattern-recognition algorithms for hybrid processing, Ⅱ:eigenvector-based algorithm. 1988:670 - 1682.
  • 3Hong Z Q ,Jing Yuyang. Optimal discriminant plane for a small number of samples and design methed of classifier on the plane [ J ]. Pattern Recognition, 1991,24 ( 4 ) : 317 - 324.
  • 4Liu K, Cheng Y. An efficient algorithm for Foley-Sammon dptimal set of discriminant vectors by algebraic method[ J]. Internal Journal of Pattern Recognition and Artificial Intelligence. 1992,6(5) :817 -829.
  • 5Foley D H,Samon J W,Jr. An optimal set of discriminant vectors[ J]. IEEE Trans. Comput, 1975,24 : 281 - 289.
  • 6Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE PAMI, 1997,19(7) :711 -720.
  • 7Yu H, Yang J. A direct LDA algorithm for high dimensional data-with application to face recognition[J]. Pattern Recognition,2001,34:2067 - 2070.
  • 8Chen L, Liao H, Ko M, et al. A new LDA-based face recognition system which can solve the small sample size problem [ J ]. Pattern Recognition ,2000,33 (10) :1713 - 1726.
  • 9Bengio Y, Le Cun Y, Henderson D. Globally trained handwritten word recognizer using spatial representation, space displacement neural net- works, and hidden Markov models [ M ]//Advances in Neural Information Processing Systems, vol. 6. San Mateo, CA, 1994.
  • 10Fox N A. O'Mullane B A, Reilly R B. VALID:A new practical audiovisual database,and comparative results[ C]//Proc. of the 5th Intemational Conference on Audio-and Video-Based Biometrie Person Authentication ( AVBPA-2005 ).

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部