期刊文献+

基于机制转换非线性模型的短期负荷预测 被引量:1

Short term load forecasting based on regime-switching nonlinear models
下载PDF
导出
摘要 研究了负荷时间序列波动性,提出了一种基于机制转换非线性模型的短期负荷预测方法。在二阶矩层面建立了标准机制转换非线性模型(LSTAR),有效地解决了TAR模型的间断点问题。提出了基于厚尾假设的机制转换模型。借助模型的不对称参数,分析了不同性质冲击下的不同机制。用实际算例验证了该方法的可行性和有效性,并比较了模型的预测能力,得到厚尾LSTAR模型效果最优。 This paper analyzes the volatility of load time series and proposes a feasible approach for short-term load forecasting based on regime-switching nonlinear models. The standard regimeswitching models-LSTAR are specified to solve the break point puzzle of TAR effectively. Furthermore, generalized models with fattail distribution assumption are proposed. With the help of asymmetric parameter, the mechanism of regime against different shocks is analyzed. Load forecasting results on a practical example are presented to clearly demonstrate and verify the proposed algorithm. The forecast performance comparison of all the regime-switching models shows that fat-tail LSTAR model outoerforms others.
出处 《电力需求侧管理》 2010年第2期34-37,共4页 Power Demand Side Management
关键词 ARCH模型 厚尾 负荷预测 Logistic函数 LSTAR 机制转换 ARCH Model fat-tail load forecasting logistic function LSTAR Regime-switching
  • 相关文献

参考文献14

  • 1牛东晓,谷志红,邢棉,王会青.基于数据挖掘的SVM短期负荷预测方法研究[J].中国电机工程学报,2006,26(18):6-12. 被引量:120
  • 2莫维仁,张伯明,孙宏斌,胡子衡.短期负荷综合预测模型的探讨[J].电力系统自动化,2004,28(1):30-34. 被引量:32
  • 3陈昊.基于非高斯分布GARCH模型的负荷预测[J].电力自动化设备,2008,28(7):65-68. 被引量:15
  • 4艾欣,蔡国伟,张湛.电力系统短期负荷预测中非线性模型的研究与应用[J].电力系统自动化,1994,18(12):19-23. 被引量:6
  • 5Howell Tong. Non-Linear Time Series--A Dynamical System Approach [ M ]. Oxford: Oxford University Press, 1990.
  • 6Engle R F. Autoregressive Conditional Heteroskedasticity with Estimate of the Variance of U K Inflation[J]. Econometrica, 1982,50(4) :987-1008.
  • 7Tim Bollerslev. Generalized Autoregressive Conditional Heteroskedasticity [J], Journal of Econometrics, 1986, 31: 307-327.
  • 8L Glosten, R Jagannathan, D Runkle. On the relation between the expected value and volatility of the nominal excess return on stocks [J]. Journal of Finance, 1993, 48 (5) : 1779-1801.
  • 9Terasvirta T, Anderson H M. Characterizing nonlinearities in business cycles using smooth transition autoregressive models [ J ]. Journal of Applied Econometrics 1992, 7 (12):119-136.
  • 10Dijk V D, Terasvirta T, Franses P H. Smooth transition autoregressive models--a survey of recent developments [J]. Econometric Reviews, 2002,21( 1 ) : 1-47.

二级参考文献32

  • 1康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:499
  • 2牛东晓,谷志红,邢棉,王会青.基于数据挖掘的SVM短期负荷预测方法研究[J].中国电机工程学报,2006,26(18):6-12. 被引量:120
  • 3陈宝林(Chen Baolin).最优化方法(Optimized Methods)[M].北京:清华大学出版社(Beijing:Tsinghua University Press),1989..
  • 4ENGLE R F. The use of ARCH/GARCH models in applied econometrics [J ]. Journal of Applied Eeonometrles,2001,15 (4) : 157 - 168.
  • 5BOLLERSLEV T, CHOU R,KRONER K. ARCH modeling in finance:a review of the theory and empirical evidence [J]. Journal of Econometrics, 1992(52 ) :5-59.
  • 6CHEN Hao. A study of autoregressive conditional heterosce- dasticity model in load forecasting[C/CD]//Power Con2006. Chongqing, China : [ s.n. ], 2006.
  • 7ENGLE R F. Autoregressive conditional heteroskedasticity with estimate of the variance of U.K. inflatinn[J]. Econometrica, 1982(50) :987 - 1008.
  • 8ENGLE R F,BOLLERSLEV T. Modeling the persistence of conditional variance[J]. Econometric Reviews, 1986(5 ) : 1-50.
  • 9BOLLERSLEV T. Generalized autoregressive conditional heteros- kedasticity[J]. Journal of Econometrics, 1986(31 ) :307-327.
  • 10BOLLERSLEV T. A conditional heteroskedastic time series model for speculative prices and rates of return[J]. Review of Economics and Statistics, 1987 (69) : 542 - 547.

共引文献164

同被引文献16

  • 1艾欣,蔡国伟,张湛.电力系统短期负荷预测中非线性模型的研究与应用[J].电力系统自动化,1994,18(12):19-23. 被引量:6
  • 2Kandil N, Wamkeue R, Saad M, et al. An efficient ap- proach for short term load forecasting using artificial neural networks [ J ]. International Journal of Electrical Power &Energy Systems, 2006, 28(8):525-530.
  • 3Tong Howell. Non-linear time series--a dynamical sys- tem approach [ M]. Oxford: Oxford University Press, 1990.
  • 4Engle R F. Autoregressive conditional heteroskedasticity with estimate of the variance of United Kingdom infla- tion [J]. Econometrica,1982, 50(4): 987-1008.
  • 5Bollerslev T. Generalized autoregressive conditional heteroskedasticity[ J ]. Journal of Econometrics, 1986,31(3) : 307-327.
  • 6Rabemananjara R, Zakoian J M. Threshold ARCH models and asymmetries in volatility [J]. Journal of Applied Econometrics, 1993, 8( 1 ) :31 -49.
  • 7Enders W, Granger C W J. Unit-root tests and asym- metric adjustment with an example using the term structure of interest rates [J]. Journal of Business and Economic Statistics, 1998, 16 ( 3 ) : 304 - 311.
  • 8Tasy R S. Analysis of financial time series[M]. New York: John Wiley & Sons, 2002.
  • 9Engle R, Ng V. Measuring and testing the impact of news on volatility [J]. Journal of Finance, 1993, 48 (5) :1749 - 1778.
  • 10Pagan A, Schwert G W. Alternative models for condi- tional stock volatility [ J ]. Journal of Econometrics, 1990, 45( 1 ) :267 -290.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部