期刊文献+

一类具广义边界条件的迁移方程的谱分布

The Spectral Distribution of Transport Equation with General Boundary Condition
下载PDF
导出
摘要 本文在L2空间上研究了板几何中一类具各向异性、连续能量、均匀介质带广义边界条件的迁移方程,得出了该A算子在带域Pas(A)中无复本征值和由有限个具有限代数重数的实离散本征值组成等结果。 The objective of this paper is to research the spectrum of transport equation for anisotropic, continuous energy and homo- geneous with general boundary condition in slab geometry of L^2 space. It obtains that the transport operator A Ires no complex eigenvalues, and the spectrum of the transport operator A consists of finite real isolated eigenvalues which have a finite algebraic multi- plicity in trip Pas(A).
出处 《上饶师范学院学报》 2009年第6期17-20,共4页 Journal of Shangrao Normal University
基金 江西省自然科学基金资助课题(2007GZS0105)
关键词 迁移方程 紧算子 广义边界条件 复本征值 实离散本征值 Transport equation compact operators general boundary condition complex eigenvalue real discrete eigenvalues
  • 相关文献

参考文献3

二级参考文献24

  • 1王胜华,马江山.板几何中一类具周期边界条件的奇异迁移方程[J].南昌大学学报(理科版),2005,29(4):313-320. 被引量:13
  • 2吴红星,王胜华.板模型中具周期边界条件迁移算子的谱分析[J].上饶师范学院学报,2006,26(6):1-3. 被引量:2
  • 3Khalid Latrach, Abdelkader Dehici. Spectral Properties and Time Asymptotic Behaviour of Linear Transport Equations in Slab Geometry [ J ]. Mathematical Methods in the Applied Sciences,2001,24:689 - 711.
  • 4Wang Shenghua, Yang Mingzhu,Xu Genqi. The Spectrum of the Transport Operator with Generalized Boundary Conditions [ J ]. Transport Theory and Statistical Physics, 1996,25 (7) : 811 - 823.
  • 5Khalid Latrach. On the Spectrum of the Transport Operator with Abstract Boundary Conditions in slab geometry [ J ]. Journal of Mathematical Analysis and Applications ,2000 ,252 : 1 -17.
  • 6Mohamed Chabi, Khalid Latrach. Singular One - dimensional Transport Equations Onspace [ J ]. Journal of Mathematical Analysis and Applications,2003,383:319 - 336.
  • 7Voigt J. Spectral Properties of the Neutron Transport Equation[ J]. Journal of Mathematical Analysis and Applications, 1985,106 : 140 - 153.
  • 8[1]Lehner J.and Wing G M.On the spectrum of an Unsymmetric Operator aring in the transport theory of neutron[J].Comm.Pure.Appl.Math,1955,(8) :217-234.
  • 9[2]Lehner J.and Wing G M.Solution of the linearized Boltzmann equation for the slab geometry[J].Duke Math.J,1956,(23): 125-142.
  • 10[3]Jorgens K.An asymptotic expansion in the theory of neutron transport[J].Comm.pure.Appl.Math,1965,( 11 ) :219-242.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部