期刊文献+

一类高阶代数微分方程组解的增长级估计 被引量:3

On the Estimate of Growth Order of Solutions of a Class of Systems of Algebric Differential Equations with Higher Orders
下载PDF
导出
摘要 运用正规族的Zalcman引理和袁文俊等作者的技巧给出了一类代数微分方程组解的增长估计,推广了苏先峰[13]的相关结果,并举例说明估计的结果在特殊情形下是精确的. We obtain an estimation of the growth order of solution for a type of systems of algebraic differential equations by using Zalcman Lemma and methods given by Wenjun Yuan etc.,and extend the results given by Xianfeng Su etc.By employing a special example,we find our estimation results are accurate.
出处 《湛江师范学院学报》 2009年第6期39-43,共5页 Journal of Zhanjiang Normal College
基金 国家自然科学基金资助项目(10441220) 国家教育部博士点基金资助项目(200810780002) 广州市教育局科技计划项目(62035)
关键词 亚纯函数 正规族 代数微分方程组 meromorphic function normal family systems of algebraic differential equations
  • 相关文献

参考文献14

  • 1Hayman W K. Meromorphic Functions[M]. Oxford: Clarendon Press, 1964.
  • 2Laine I. Nevanlinna theory and complex differential equations[J]. Berlin: de Grnyter, 1993.
  • 3Yang Le. Value Distribution Theory[M]. Berlin: Springer-Verlag, 1993.
  • 4顾永兴.庞学诚.方明亮.正规族理论及其应用[M].北京:科学出版社,2005.
  • 5Gol'dberg A A. On single-valued solutions of first-order differential equations(Rissian)[J]. Ukrain. Mat Zh. 1957, 8: 254-261.
  • 6Bank R S. Kaufman On meromorphie solutions of first-order differential equations[J]. Comment Math Helv, 1976. 51: 289-299.
  • 7Barsegian G. Estimates of derivatives of meromorphic functions on sets of α-points[J]. J London Math Soc, 1986, 34 (2):534-540.
  • 8Barsegian G. On a method of study of algebraic differential equations[J]. Bull Hong Kong Math Soc. 1998, 2(1):159-164.
  • 9Bergweiler W. On a theorem of Gol'dberg concerning meromorphic solutions of algebraic di? erential equations[J]. Complex Variables, 1998, 37: 93-96.
  • 10Yuan Wen-jun, Xiao Bing , Zhang jian-jun. The general result of Gol'dberg's theorem concerning the growth of meromorphic solutions of algebraic differential equations[J]. J Comput Appl Math, 2009, 58: 1788-1791.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部