摘要
利用双模近似方法研究了一维双组分玻色-爱因斯坦凝聚体(Bose-Einstein condensates,BECs)的量子隧穿特性.从描述三维双组分BECs系统的Gross-Pitaevskii方程(GPE)出发,得到了描述一维体系的GP方程.把体系波函数写成原子数和相位指数的乘积,得到描述体系隧穿特性的费曼方程.数值求解费曼方程,研究了原子之间相互作用(双组分BECs体系原子之间的相互作用包括组分内部原子之间的相互作用和不同组分原子之间的相互作用)对隧穿特性的影响.结果显示,当原子之间的相互作用较弱时,体系发生量子隧穿现象,表现为原子数在平衡位置附近作周期振荡;随着原子之间相互作用增强,体系经历一个临界状态,进入自俘获状态,即由于原子之间相互作用的存在,在对称双势阱中演化的BECs可以呈现出原子数高度的不对称分布,好像绝大数原子被其中一个势阱俘获.从隧穿到自俘获原子之间的相互作用存在一个临界值,从而体系的能量也对应一个临界值,根据体系的哈密顿函数,就能求出相互作用临界值的表达式.
One-dimensional quantum tunneling dynamics between two-component Bose-Einstein condensates confined in a double-well magnetic trap is investigated. One-dim ensional Gross-Pitaevskii equations for two-component Bose-Einstein condensates are derived from the three-dimensional ones. We derive Feynman equations from one-dimensional Gross-Pitaevskii equations. To study tunneling dynamics we solve Feynman equations in terms of a completely numerical procedure . In contrast to single-component condensates between two-component condensates, we find that this system can take on abundant tunneling results, the full tunneling dynamical behavior is summarized in phase portrait with constant energy lines. It is found that this system can achieve self-trapping when increase interatomic interactions exceed a critical value. We give the analytica lcritical expressions of interatomic interactions from the system Hamiltonian.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2010年第3期1449-1455,共7页
Acta Physica Sinica