期刊文献+

基于粒子群优化的独立分量分析算法研究 被引量:3

Research on Independent Component Analysis Based on Particle Swarm Optimization Algorithms
下载PDF
导出
摘要 在分析独立分量分析算法的基础上,给出了一种基于粒子群优化的独立分量分析算法。该算法以互信息量最小化为目标函数,通过对粒子群位置矢量和速度矢量更新的改进,得到全局最优值,从而得到分离矩阵。仿真实验表明,基于粒子群优化的独立分量分析算法是一种非常有效的盲源分离算法。 On the basis of analyzing the independent component analysis algorithms, a novel method based on particle swarm optimization was proposed to minimize the mutual information, which through improving position vector and velocity vector to get the global optimization solution and then separate the mixed signals. The simulation results showed that the independent component analysis based on particle swarm optimization was a more efficient algorithm.
作者 张文希 郑茂
出处 《科学技术与工程》 2010年第8期1866-1869,1873,共5页 Science Technology and Engineering
关键词 独立分量分析 互信息 粒子群优化 适应度函数 independent component analysis mutual information particle swarm optimization fit- ness function
  • 相关文献

参考文献11

  • 1Amari S. Natural gradient works efficiently in learning. Neural Compu- tation, 1998; 10(2) : 251-276.
  • 2Yang H H, Amari S I. Adaptive online leaming algorithms for blind separation-maximum entropy and minimum mutual information. Neural Computation, 1997 ;9 (5) : 1457-1482.
  • 3Cruces S, Cichocki A, Castedo L. An iterative inversion approach to blind source separation. IEEE Transcation on Neural Networks, 2000 ; 11 (6) :1423-1437.
  • 4Lee T W, Girolami M ,Sejnowski T J. Independent component analysis using an extended infomax algorithm for mixed subganssian and supergaussian sources. Neural Computation, 1999 ; 11 ( 2 ) :417 -441.
  • 5Kennedy J, Eberhart R. Particle swarm optimization. Neural Networks, IEEE, ICNN, Piscataway, NJ. IEEE Service Center, 1995; (4) : 1942-1948.
  • 6Hyvarinen A, Karhunen J, Oja E. Independent component analysis. New York: Wiley, 2001.
  • 7Yang H H, Amari S, Cichocki A. Information back-propagation for blind separation of sources from non-linear mixture. In: Proc ICNN Houston, 1997 ;2141-2146.
  • 8Kennedy J, Eberchart R. A discrete binary version of the particle swarm optimization algorithm. Systems Man and Cybernetics, IEEE ICSMC, 1997 ; (5) :4104-4108.
  • 9Shi Y, Eberhart R. Parameter selection in particle swarm optimization. In: Proc Int Conf Evol Program,1998:591-600.
  • 10Kennedy J. The Particle Swarm:Social Adaptation of knowledge. In: Proc IEEE Int Conf. Evolutionary Computation,1997:303-308.

同被引文献13

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部