摘要
在分析独立分量分析算法的基础上,给出了一种基于粒子群优化的独立分量分析算法。该算法以互信息量最小化为目标函数,通过对粒子群位置矢量和速度矢量更新的改进,得到全局最优值,从而得到分离矩阵。仿真实验表明,基于粒子群优化的独立分量分析算法是一种非常有效的盲源分离算法。
On the basis of analyzing the independent component analysis algorithms, a novel method based on particle swarm optimization was proposed to minimize the mutual information, which through improving position vector and velocity vector to get the global optimization solution and then separate the mixed signals. The simulation results showed that the independent component analysis based on particle swarm optimization was a more efficient algorithm.
出处
《科学技术与工程》
2010年第8期1866-1869,1873,共5页
Science Technology and Engineering
关键词
独立分量分析
互信息
粒子群优化
适应度函数
independent component analysis mutual information particle swarm optimization fit- ness function