期刊文献+

全熔透钨极惰性气体保护电弧焊熔池表面变形动态过程的数值分析 被引量:2

Numerical Analysis of Dynamic Surface-deformation of Fully-penetrated Gas Tungsten Arc Welding Molten Pool
下载PDF
导出
摘要 基于能量守恒和质量守恒原理,并依据能量最小化理论,推导出全熔透钨极惰性气体保护电弧焊(Gas tungsten arc welding,GTAW)熔池自由上、下表面变形的控制方程组,并探讨与文献给出的熔透熔池上、下表面变形控制方程组的异同,给出控制方程组中将熔池上表面变形和下表面变形耦合为一个统一整体的拉格朗日参数的求解方案。分别对GTAW焊接不锈钢和低碳钢薄板从引弧到熔透并达到准稳态的全过程中熔池上、下表面变形的动态演变进行预测和分析,从中提取出了可用于表征工件熔透与否的参数,为基于正面视觉检测的背面熔透智能控制提供了依据。 Based on the principles of energy and mass conservation as well as energy minimization theory within a whole system of fully-penetrated gas tungsten arc welding(GTAW) molten pool,the governing equations are derived to describe the pool surface-deformation on both sides.The solution scheme for determining the Lagrange parameter is given for the coupled upper and bottom pool surface-deformation equations which are unified with a single Lagrange parameter.Through predicting and analyzing the dynamic variation processes of both upper and bottom pool surface-deformation during the period from the weld pool formation to its quasi-steady state for GTAW stainless steel and low carbon steel,the variables are extracted to characterize and judge the condition whether the workpiece is penetrated or not.It lays foundation for realizing welds penetration control based on front-side vision inspection.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2010年第4期42-47,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(50475131)
关键词 熔池表面变形 拉格朗日参数 熔透控制 数值分析 Weld pool surface-deformation Lagrange parameter Penetration control Numerical analysis
  • 相关文献

参考文献10

  • 1CHOO R T C, SZEKELY J, WESTHOFF R C. Modeling of high-current arcs with emphasis on free surface phenomena in the weld pool[J]. Welding Journal, 1990, 69(9): 346-361.
  • 2TSAI M C, KOU S. Electromagnetic-force-induce convection in weld pools with a free surface[J]. Welding Journal, 1990, 69(6): 241-246.
  • 3OHJI T, NISHIGUCHI K. Mathematical modeling of molten pool in arc welding of thin plate[R]. Osaka: Osaka University, 1983.
  • 4WU C S, DORN L. Prediction of surface depression of a tungsten inert gas weld pool in the full-penetration condition[J]. Journal of Engineering Manufacture, 1995, 209(2): 221-226.
  • 5CAO Z N, ZHANG Y M, KOVACEVIC R. Numerical dynamic analysis of moving GTA weld pool[J]. Journal of Manufacture Science and Engineering, 1998, 120(2): 173-178.
  • 6FAN H G, TSAI H L, NA S J. Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding[J]. International Journal of Heat and Mass Transfer, 2001, 44(2): 417-428.
  • 7ZHAO P C, WU C S, ZHANG Y M. Modelling the transient behaviours of a fully penetrated gas-tungsten arc weld pool with surface deformation[J]. Journal of Engineering Manufacture, 2005, 219(1): 99-110.
  • 8赵明,李瑞英.Numerical analysis of dynamic variation of weld pool geometry in fully-penetrated TIG welding[J].China Welding,2008,17(2):47-53. 被引量:6
  • 9WU C S, CHEN J, ZHANG Y M. Numerical analysis of both front- and back-side deformation of fully-penetrated GTAW weld pool surfaces[J]. Computational Materials Science, 2007, 39(3): 635-642.
  • 10ZHANG Y M, BEARDSLEY M, KOVACEVIC R. Real- time image processing for 3D measurement of weld pool surface[J]. Manufacturing Science and Engineering, 1994, 68(1): 255-262.

二级参考文献1

共引文献5

同被引文献6

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部