期刊文献+

两组任意夹角倾斜裂缝介质地震波场模拟 被引量:6

Seismic wave field modeling for dipping fracture medium with two groups of arbitrary included angle
下载PDF
导出
摘要 两组任意夹角的倾斜裂缝在自然界中具有普遍性,本文针对两组任意夹角的倾斜裂缝介质模型,采用交错网格高阶差分法进行地震波场二维三分量数值模拟。根据Hudson理论和Bond矩阵变换得到裂缝型储层在观测坐标下的弹性系数,对比了在本构坐标和观测坐标下地震波场之间的差异,分析了不同方位角下炮记录波场特征、不同炮检距方位角道集上的波场特征,以及改变裂缝夹角后在方位角道集记录上的响应特征。研究表明,裂缝型储层的各向异性特征是裂缝的综合反映,各向异性的强弱不仅与裂缝的发育强度有关,还与裂缝发育的复杂程度有关。通过对方位各向异性介质数值模拟和波场特征的分析,可为方位各向异性介质的裂缝反演提供理论基础。 The dipping fracture with two groups of arbitrary included angle can be easily founded in the nature,regarding the dipping fracture medium model with two groups of arbitrary included angle staggered-grid high-order finite-difference was used to conduct seismic wave field 2D3C numerical modeling in this paper.Based on Hudson theory and Bond matrix transformation the elastic coefficients of the fractured reservoir under the viewing coordinate system were obtained,and the difference between seismic wave field under constitutive coordinate system and seismic wave field under viewing coordinate system were correlated,the wave field characteristics of shot records with different azimuths,the wave field characteristics of azimuth gathers under different offsets,and the response characteristics on azimuth gathers when changing fracture inclined angle were analyzed.The studies above illustrates that anisotropic characteristics of the fractured reservoir is the integrated reflection of the fractures,and the anisotropic degree is not only related to the intensity of the fracture development,but also related to its complex degree.Through analyzing numerical modeling for azimuthally anisotropic media and wave field characteristics,theoretical foundation is laid for fracture inversion in azimuthally anisotropic media.
出处 《石油地球物理勘探》 EI CSCD 北大核心 2010年第1期47-54,共8页 Oil Geophysical Prospecting
基金 国家973计划项目(2006CB202304)
关键词 地震波场模拟 裂缝介质 夹角 方位各向异性介质 裂缝型储层 波场特征 观测坐标 数值模拟 dipping fracture,wave field modeling,anisotropy,fracture inversion,elastic coefficient,staggered-grid high-order finite-difference
  • 相关文献

参考文献9

  • 1Tsvankin. Seismic Signatures and Analysis of Reflection Data in Anisotropic Media. Elsevier Science Ltd, 2005.
  • 2Crampin S. Effective anisotropic elastic constants for wave propagation through cracked solids. Geophysical Journal of the Royal Astronomical Society. 1984, 76:135-145.
  • 3王德利,何樵登,韩立国.裂隙型单斜介质中多方位地面三分量记录模拟[J].地球物理学报,2005,48(2):386-393. 被引量:34
  • 4董良国,马在田,曹景忠,王华忠,耿建华,雷兵,许世勇.一阶弹性波方程交错网格高阶差分解法[J].地球物理学报,2000,43(3):411-419. 被引量:342
  • 5Hudson J A. Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Jour- nal of the Royal Astronomical Society, 1981, 64: 133-150.
  • 6Hudson J A. A higher order approximation to the wave propagation constants for a cracked solid. Geophysical Journal of the Royal Astronomical Society, 1986, 87:265-274.
  • 7Schoenberg M. Reflection of elastic waves from periodically stratified media with interracial slip. Geophysical Prospecting, 1983, 31:265-292.
  • 8Ketil H. 3-D elastic finite-difference modeling in tilted transversely isotropic media. SEG Technical Program Expanded Abstracts, 2002,21.
  • 9Igel H, Mora P, Riollet B. Anisotropic wave propagation through finite-difference grids. Geophysics, 1988,58(9) :1359-1372.

二级参考文献20

  • 1侯安宁,何樵登.各向异性介质中弹性波动高阶差分法及其稳定性的研究[J].地球物理学报,1995,38(2):243-251. 被引量:23
  • 2牛滨华,何樵登,孙春岩.裂隙各向异性介质波场VSP多分量记录的数值模拟[J].地球物理学报,1995,38(4):519-527. 被引量:15
  • 3Thomsen L. Seismic anisotropy. Geophysics, 2001,66(1) :40 ~ 41.
  • 4Fornberg B. Pseudospectral approximation of the elastic wave equation on a staggered grid. 59th Ann. Intemat. Mtg., Soc. Expl.Geophys., Expanded Abstracts, 1989.1047 ~ 1049.
  • 5Symons N, Aldridge D. 3D elastic modeling of salt flank reflections at Bayou Choctaw Salt Dome, Louisiana. 70th Ann. Internat.Mtg., Soc. Expl. Geophys.. Expanded Abstracts, 2000.2436 ~2439.
  • 6Dablain M. The application of high-order differencing to the scalar wave equation. Geophysics, 1986, 51(1) :54 ~ 66.
  • 7Virieux J. SH-wave propagation in heterogeneous media: velocitystress finite-difference method. Geophysics, 1984,49(11): 1933 ~1957.
  • 8Virieux J. P-SV wave propagation in heterogeneous media,Velocity-stress finite-difference method. Geophysics, 1986,51 (4):889 ~ 901.
  • 9Igel H, Mora P, Riollet B. Anisotropic wave propagation through finite-difference grids. Geophysics, 1995,60(4): 1203 ~ 1216.
  • 10Dong Z, McMechan G A. 3-D viscoelasitc anisotropic modeling of data from a multi-component, multi-azimuth experiment in northeast Texas. Geophysics ,1995 , 60(4) : 1128 ~ 1150.

共引文献373

同被引文献77

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部