期刊文献+

拉弯联合载荷下弹塑性J积分估算方法研究 被引量:2

ELASTIC-PLASTIC J INTEGRAL CALCULATION METHOD FOR CRACKS IN STRUCTURES UNDER COMBINED TENSION AND BENDING
原文传递
导出
摘要 基于计算J积分的等效原场应力方法,利用等效原场应力σeff只有外加载荷意义而不再具有拉伸或者弯曲等载荷类型方面的属性,提出了利用现有含裂纹结构的纯拉伸以及纯弯曲J积分全塑性解直接计算拉弯联合载荷下的J积分简化估算方法。该方法可以直接利用已经存在的J积分纯拉伸和纯弯曲全塑性解来计算拉弯联合载荷下的J积分,简化了拉弯联合载荷下J积分全塑性解的计算;并且可以应用于任意应力-应变材料,包括Ramborg-Osgood关系的材料和任意单调加载非R-O关系材料。计算过程简便。并通过与有限元计算结果对比对之进行验证,说明其工程实用性,为对含裂纹结构进行弹塑性断裂评定奠定基础。 Based on the equivalent remote stress method for J integral evaluations and its equivalent remote stress σeff merely related to an applied load,not related to the load types,such as a tension load or a bending load,the present paper derived out the J integral calculation equation of the structure with cracks under combined tension and bending deformations.The present method directly uses the available h1 solutions of the structure with cracks under a pure tension loading and a pure bending loading.It saves the time cost in solving the h1 solutions of cracks in the structure under combined tension and bending loads.It could be applied to any stress-strain relationships of materials,including R-O material and non-R-O material under monotonic increasing loadings.Its solution procedure is rather simple and numerical results are rather accurate.All the numerical results solved by the method are compared with FE results.
出处 《工程力学》 EI CSCD 北大核心 2010年第3期6-9,44,共5页 Engineering Mechanics
基金 国家"十五"滚动课题项目(2004BA803B02-05) 北京市科技项目(D08050600380803)
关键词 断裂分析 等效原场应力 拉弯联合 裂纹 J积分 fracture analysis equivalent remote stress combined tension and bending crack J integral
  • 相关文献

参考文献14

  • 1库默V,杰曼MD,施CF.弹塑性断裂分析工程方法[M].周洪范,译.北京:国防工业出版社,1985.
  • 2Kumar V, German M D, Wilkening W W. EPRI-3607 弹塑性断裂分析进展[M].清华大学工程力学研究所,译.北京:清华人学,1984.
  • 3EPRI, Novetech Corporation. Ductile fracture handbook [M]. Vol.1-3, Research Report Center, Palo Alto, California, 1991 - 1993.
  • 4Rice J R, Levy N. The part-through surface crack in an elastic plate [J]. J. Appl. Mech., 1972, 39(1): 185-194.
  • 5Newman J C, Raju I S. An empirical stress-intensity factor equation for the surface crack [J]. Engineering Fracture Mechanics, 1981, 15: 185-192.
  • 6Parks D M. The inelastic line-spring: Estimates of elastic-plastic fracture mechanics parameters for surfacecracked plates and shells [J]. Journal of Pressure Vessel Technology, 1979, 11(4): 817-829.
  • 7陆寅初 宁杰.考虑材料加工硬化的表面裂纹非线性线弹簧模型[J].国防科技大学学报,1984,(3):1-1.
  • 8Gilles Ph, Bios C. Comparisons of finite element J and KJ estimation scheme predictions for a surface cracked pipe under bending or tension [J]. Fatigue and Fracture American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, ASME, New York, USA, 1996, 323(1): 65-70.
  • 9胡正民,王威强,李培宁,琚定一.用EPRI全塑性解估算长屈服平台钢含缺陷结构的J积分[J].石油化工设备,1992,21(3):10-13. 被引量:13
  • 10王威强,李爱菊,李培宁,琚定一.EPRI全塑性解的迭加方法和应用[J].青岛化工学院学报(自然科学版),1992,13(3):23-30. 被引量:6

二级参考文献7

  • 1雷月葆,李培宁,王志文,吴晓红,陈兆夫.三段幂次J积分计算方法的验证与改进(二)[J].压力容器,1996,13(5):35-39. 被引量:6
  • 2Melvin F Kanninen, Carl H Popelar. Advanced fracture mechanics. New York: Oxford University Press, 1985.
  • 3Genki Yagawa, Yasumi Kitajima, Hiroyoshi Ueda. Three dimensional fully plastic solutions for semi-elliptical surface cracks. Int. J. Pres. &Piping, 1993, 53:457 ~ 510.
  • 4Kumar V, German M D. Wilkening W W. Development on elastic-plastic fracture analysis (EPRI NP-3607). Palo Alto, California: Research &Development Center of EPRI, 1984.
  • 5EPRI and Noveteeh Corporation. Ductile fracture handbook. Vd. 1 - 3,Palo Alto, California: Research Report Center, 1991 - 1993A.
  • 6库默V 杰曼M D 施c F著.周范洪译.弹塑性断裂分析工程方法[M].北京:国防工业出版社,1985..
  • 7胡正民,王威强,李培宁,琚定一.用EPRI全塑性解估算长屈服平台钢含缺陷结构的J积分[J].石油化工设备,1992,21(3):10-13. 被引量:13

共引文献22

同被引文献11

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部