期刊文献+

Hamilton体系下复合材料层合板特征值灵敏度分析研究 被引量:4

STUDIES ON THE SENSITIVITY ANALYSIS OF EIGENVALUES FOR COMPOSITE LAMINATED PLATES IN HAMILTONIAN SYSTEMS
原文传递
导出
摘要 在结构优化过程中,精确的结构参数灵敏度分析是最主要的困难之一。该文在Hamilton体系下推导了复合材料层合板特征值响应灵敏度系数的控制方程,基于BSWI(B-spline wavelet on the interval)样条小波有限元方法,利用二分法求得了四边固支复合材料层合板前四阶特征值对材料密度的灵敏度系数,并与有限差分法所得结果相比较,证明了该文所提出方法的可靠性。另外,该方法能够方便地拓展到复杂层合板壳结构以及智能材料层合板特征值灵敏度系数的求解问题中去。 In the structural shape optimization(SSO) procedures,one of the main difficulties is to perform an accurate sensitivity analysis for structural responses with respect to some parameters such as structural shape sizes and material properties and so on.Based on BSWI(B-spline wavelet on the interval) wavelets element method,the governing equation of sensitivity coefficients of the eigenvalue response for composite laminated plates is derived in Hamiltonian Systems.The sensitivity coefficients of the first 4 order eigenvalues are obtained by bisection method with respect to the density of composite laminated plates whose sides are clamped.And the numerical results of bisection method are compared with that of the finite difference ones.The reliability of this eigenvalue sensitivity analysis method which based on the wavelets and Hamiltonian Systems is proved by the comparison.On additions,the eigenvalue sensitivity analysis method proposed can be expediently extended to the eigenvalue sensitivity analysis of complex laminate shell structures and intelligent composite laminated structures.
出处 《工程力学》 EI CSCD 北大核心 2010年第3期236-239,共4页 Engineering Mechanics
基金 天津市自然科学基金项目(07JCYBJC02100)
关键词 BSWI小波 特征值 复合材料层合板 灵敏度分析 HAMILTON体系 BSWI eigenvalue composite laminated plates sensitivity analysis Hamiltonian systems
  • 相关文献

参考文献12

  • 1Afonso S M B, Hinton E. Free vibration analysis and shape optimization of variable thickness plates and shells-Ⅱ. Sensitivity analysis and shape optimization [J]. Computing Systems in Engineering, 1995, 6(1): 47-66.
  • 2Pedersen P. On sensitivity analysis and optimal design of specially orthotropic Laminates [M]. USA: Engng Optimiz, 1987.
  • 3Reiss R, Ramachandran S. Maximum frequency of symmetric angle-ply laminates [M]. USA: Composite Structure, 1987.
  • 4Cawley P, Adams R D. The predicted and experimental natural modes of free-free CFRP plates [M]. USA: Journal of Composite Material, 1978.
  • 5钟万勰.应用力学对偶体系[M].北京:科学出版社,2003.
  • 6中国科学技术协会主编,中国力学学会编著.2006-2007力学科学发展报告[R].北京:中国科学技术版社,2007.
  • 7Cheng Zhenqiang, Batra R C. Three-dimensional asymptotic analysis of multiple-electrode piezoelectric laminates [J]. AIAA Journal, 2000, 38(2): 317- 325.
  • 8Zou Guiping, Tang Limin. A semi-analytical solution for laminated composite plates in Hamiltonian system [J]. Computer Methods in Applied Mechanics and Engineering, 1995, 128(2): 295-404.
  • 9Qing Guanghui, Qiu Jiajun, Liu Yanhong. Free vibration analysis of stiffened laminated plates [J]. International Journal of Solids and Structures, 2006, 43(6): 1357- 1371.
  • 10Qing Guanghui, Qiu Jiajun, Liu Yanhong. A semi-analytical solution for dynamic analysis of plate with piezoelectric patches [J]. International Journal of Solids and Structures, 2006, 43(6): 1388-1403.

二级参考文献14

  • 1Gandhi M V, Thompson B S. Smart Materials and Structures[M]. Chapman & Hall, London, 1992.
  • 2Ray M C, Rao K M, Samanta B. Exact solution for static analysis of and intelligent structure under cylindrical bending[J]. Computers and Structures, 1993, 47(6):1031-1042.
  • 3Bisegna P, Maceri F. An exact three-dimensional solution for simply supported rectangular piezoelectric plates[J].Journal of Applied Mechanics, 1996, 63(3): 628-638.
  • 4Heyliger P. Exact solutions for simply supported laminated piezoelectric plates[J]. Journal of Applied Mechanics. 1997,64(2): 299-306.
  • 5Heyliger P, Brooks S. Exact solutions for laminated piezoelectric plates in cylindrical bending[J]. Journal of Applied Mechanics, 1996, 63: 903-910.
  • 6Sosa H A, Castro M A. Electroelastic analysis of piezoelectric laminated structures[J]. Applied Mechanics Review, 1993, 46: 21-28.
  • 7Kim J, Varadan V V, Varadan V K. Finite element modeling of structures including piezoelectric active devices[J]. International Journal Numerical Methods Engineering, 1997, 40(5): 817-832.
  • 8Mittehel J M and Reddy J N. A refined hybrid plate theory of composite laminates with piezoelectric laminate[J]. International Journal Solids and Structures, 1995,32(16): 2345-2356.
  • 9Saravanos D A, Heyliger P R, Hopkinds DA. Layer wise mechanics and finite element for the dynamic analysis of piezoelectric composite plates[J], International Journal Solids and Structures. 1997,34(3): 359-378.
  • 10Cheung Y K, Jiang C P. Finite layer method in analyses of piezoelectric composite laminates[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191:879-901.

共引文献32

同被引文献88

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部