摘要
Wave packet dynamics of the Li2 molecule are investigated by using the time-dependent quantum wave packet method, and the time-resolved photoelectron spectra of the Li2 molecule are calculated. The time-resolved wave packet theory is used to reasonably interpret the phenomena of the photoelectron spectra for different parameters. Our calculation shows that the loss of the wave packets in the shelf state area of E1∑g+ plays a prominent role in the process of photoionization with the increase of the delay time. Moreover, the oscillation of the wave packet on the E1∑g+ curve symbolizes a decreasing process of energy.
Wave packet dynamics of the Li2 molecule are investigated by using the time-dependent quantum wave packet method, and the time-resolved photoelectron spectra of the Li2 molecule are calculated. The time-resolved wave packet theory is used to reasonably interpret the phenomena of the photoelectron spectra for different parameters. Our calculation shows that the loss of the wave packets in the shelf state area of E1∑g+ plays a prominent role in the process of photoionization with the increase of the delay time. Moreover, the oscillation of the wave packet on the E1∑g+ curve symbolizes a decreasing process of energy.
基金
Project supported by the National Natural Science Foundation of China (Grant Nos. 60977063 and 10574039)
the Foundation for Key Program of Ministry of Education China (Grant No. 206084)
the Innovation Scientists and Technicians Troop Construction Projects of Henan Province,China (Grant No. 084100510011)
the Innovation Talents of Institution of Higher Education of Henan Province,China (Grant No. 2006KYCX002)