期刊文献+

基于排序学习的数字图书馆信息检索 被引量:2

The Information Retrieval for the Digital Library Based on Learning to Rank
下载PDF
导出
摘要 多媒体信息检索技术的一个研究热点是通过学习来对检索结果进行排序,而排序学习在数字图书馆信息检索中的应用也成为数字图书馆研究的一个新热点。本文分析了数字图书馆信息检索的现状和主流排序算法,特别着重分析现行经典排序算法PageRank,并在此基础上研究分析排序学习在数字图书馆个性化服务中的应用。结果表明排序学习在分析用户个性化需求,提高用户检索的查准率,满足用户个性化检索要求方面能够发挥重要作用。 One of the hotspot in the research of multimedia information retrieval technology is to rank the search results with learning. Applied in the information retrieval of digital libraries it also becomes a new focus in the digital library research. This paper analyzes the status quo of the information retrieval and the mainstream ranking algorithm in the digital library with a special consideration on the analysis of current classical ranking algorithm "PageRank', and the application of learning to rank in personalized service of the digital library. The paper comes to the conclusion that learning to rank plays an important role in analyzing user's requirements, improving users' precision ratio of information retrieval and meet users' personal needs of search
作者 申溢颖
出处 《西安建筑科技大学学报(社会科学版)》 2010年第1期97-100,共4页 Journal of Xi'an University of Architecture & Technology(Social Science Edition)
关键词 排序学习 数字图书馆 信息检索 个性化服务 learning to rank digital library information retrieval personalized service
  • 相关文献

参考文献8

  • 1ZHOU K. , XUE G. , ZHA H. , et al. Learning to rank with ties[C]. Proceedings of the Annual International AEM SIGIR Conference, Singapore, 2008.
  • 2HUANG T. S. What are the 7 millennium problems in multimedia information retrieval[C]. Proceeding of the ACM international conference on Multimedia information retrieval, Vancouver, 2008.
  • 3BABA H.Google的秘密:PageRank彻底解说中文版[EB/OL].[2007-10-12].http://www.kreny.com/pagerank_cn.htm.
  • 4何晓阳,吴强,吴治蓉.HITS算法与PageRank算法比较分析[J].情报杂志,2004,23(2):85-86. 被引量:26
  • 5LEMPEL R. MORAN S. The Stochastic Approach for Link-Structure Analysis (SALSA) and the TKC Effect[J]. ACM Trans. Information systems, 2001, 19(5) :131-160.
  • 6MENDELZON A Rafiei D. What do the Neighbours Think? Computing web Page RePutations[J]. IEEE Data Engineering Bulietin, 2000,23 (3) : 9- 16.
  • 7KIM S., ZHANG B T. Genetic Mining of HTML Structures for Effective Web-Document Retrieval[J]. Applied Intellingences, 2003(18) :243-25.
  • 8TAPAS K. JASON Y. Z, integrating link structure and content information for ran king web document[ED/OL]. [2001-06-18]. http://www. tree. hist. gov/pubs/trec10/papers/ibm_fapas-paper. pdf.

二级参考文献9

  • 1Jon M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. Journal of the ACM,1999;46(5)
  • 2Farahat, A., T. LoFaro, J. C. Miller, G. Rae and L. A. Ward. Existence and Uniqueness of Ranking Vectors for Linear Link Analysis Algorithms. http://www.damtp.cam.ac.uk/user/jcm52/hits.pdf
  • 3R. Lempel, S. Moran. The Stochastic Approach for Link-Structure Analysis(SALSA)and the TKC effect. Computer Networks,2000,33
  • 4Henzinger R. Hyperlink Analysis for the Web. IEEE Internet Computing, 2001 : 45-50. http://computer.org/internet/
  • 5S. Brin, L. Page. Anatomy of a Large-Scale HypertextualWeb Search Engine. Proc.7th International World Wide Web Conference, 1998
  • 6http://www.google.com/
  • 7Liang Xu,Xueqi Cheng, and Wensi Xi. TREC10-HITS. http://csgrad.cs.vt.edu/-lixu1/work/ CS5604 / hits.htm
  • 8陈定权.Web信息检索技术最新进展[J].现代图书情报技术,2002(2):39-41. 被引量:16
  • 9曹军.Google的PageRank技术剖析[J].情报杂志,2002,21(10):15-18. 被引量:70

共引文献25

同被引文献16

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部