期刊文献+

求解Hamilton-Jacobi方程的高精度GDQ方法

High Accurate GDQ Method for Solving Hamilton-Jacobi Equations
下载PDF
导出
摘要 利用求解常微分方程的GDQ方法的思想,结合使用TVD限制器进行校正,研究求解Hamilton-Jacobi方程的高精度高分辨率数值方法,构造了一类新的高精度差分格式,并证明了它在满足一定的CFL条件下具有TVD特性;然后,推广到二维情况;最后,给出了几个典型数值算例.计算结果表明:该格式具有形式简单、边界条件易于处理、计算工作量小且分辨率高等优点. Based on ideas of generalized differential quadrature method for ordinary differential equation and total variation diminishing limiter correction, high accuracy and high resolution methods for Hamilton-Jacobi equations are researched. A new class of high accurate difference schemes for Hamilton-Jacobi equations are present. And then, TVD property of the resulting schemes is proved under a certain CFL condition. Furthermore, the extension to two dimensional Hamihon-Jacobi equations is implemented. Finally, several typical numerical experiments show that these schemes have advantages of simplifying forms and easy to treat boundary conditions and low evaluated cost and high resolution.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2010年第1期17-21,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 江西省自然科学基金(0611096) 江西省教育厅2008年度科技(GJJ08224) 南昌航空大学博士启动基金(EA200607031)资助项目
关键词 HAMILTON-JACOBI方程 GDQ方法 TVD 高精度 差分格式 Hamihon-Jacobi equations GDQ method TVD high accuracy difference scheme
  • 相关文献

参考文献10

  • 1Lin Chi-tien, Tadmor E. High-resolution nonoscillatory central schemes for Hamihon-Jacobi equations [ J]. SIAM J Sci Comput,2000,21 (6) :2163-2186.
  • 2Kurganov A, Tadmor E. New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations [ J ]. J Comput Phys, 2000, 160: 720-742.
  • 3Osher S, Shu C W. High order essentially nonoscillatory schemes for Hamihon-Jacobi equations [ J]. SIAM J Numer Anal, 1991,28:907- 922.
  • 4Jiang G S, Peng D P. Weighted ENO schemes for Hamilton-Jacobi equations [ J]. SIAM J Sci Comput, 2000,21(6) :2126-2143.
  • 5Qiu J, Shu C W. Hennite WENO scheme for Hamilton-Jacobi equation [ J]. J Comput Phy, 2005,204:82-99.
  • 6Qiu J. WENO schemes with lax-Wendroff type time discretizations for Hamilton-Jacobi equations [ J] .J Comput Appl Math,2007,200: 591-605.
  • 7Shu C, Richards B. Application of generalized differential quadrature to solve two dimensional incompressible Navier-Stokes equations [J]. Int J Numer Meth Fluids, 1992,15:791-798.
  • 8Du H, Lim M K, Lin R M. Application of generalized differential quadrature method to structural problems [ J]. Int J Numer Meth Engrg, 1994,37:1881-1896.
  • 9郑华盛,赵宁,成娟.一维高精度离散GDQ方法[J].计算数学,2004,26(3):293-302. 被引量:5
  • 10Shu C W. Total variation diminishing time discretizations [ J]. SIAM J Sci Stat Comput, 1988,9:1073-1084.

二级参考文献10

  • 1R. Bellman, B. Kashef and J. Casti, Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, J. Comput. Phys., 10 (1972), 40-52.
  • 2A. G. Striz and W. L. Chen, Application of the differential quadrature method to the driven cavity problem, Int. J. Non-linear Mech., 29(1994), 665-670.
  • 3C. N. Chen, Differential quadrature finite difference method for structural mechanics problems, Commun. Numer. Meth. Engng., 17 (2001), 423-441.
  • 4C. Shu and B. Richards, Application of generalized differential quadrature to solve twodimensional incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 15(1992), 791-798.
  • 5C. Shu and Y. T. Chew, Application of multi-domain GDQ method to analysis of wave guides with rectangular Boundaries, J. Electromagnetic Waves and Applications, 13 (1999),223-224.
  • 6T. Y. Wu and G. R. Liu, Applicationof the generalized differential quadrature rule to eighth-order differential equations, Commun. Numer. Meth. Engng., 17 (2001), 355-364.
  • 7A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys.,49 (1983), 357-393.
  • 8C. Shu , Generalized differential-integral quadrature and application to the simulation of incompressible viscous flows including parallel computation, Ph.D. Thesis, University of Glasgow, 1991.
  • 9C. Shu , Y. T. Chew and B. E. Richards, Generalized differential and integral quadrature and its application to solve boundary layer equations, Int. J. Numer. Meth. Fluids, 21(1995), 723-733.
  • 10H. Du, M. K. Lim and R. M. Lin, Application of generalized differential quadrature method to structural problems, Int. J. Numer. Meth. Engrg., 37 (1994), 1881-1896.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部