期刊文献+

指数余弦库仑屏蔽势的精确能谱

Exact Spectrum of Exponential Cosine Screened Coulomb Potential
下载PDF
导出
摘要 利用分析转移矩阵方法,对任意3维中心力场势的能谱进行了研究,得出了指数余弦库仑屏蔽势的本征能谱,并与其他方法给出的结果进行了相应比较. Based on the analytical transfer matrix method, the eigenenerge spectrum of exponentical cosine screened coulomb can be derived by analysing the spectnma of arbitrary 3-D central potentials, and with other methods, the results are given in the corresponding comparison.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2010年第1期42-45,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(60807014)资助项目
关键词 分析转移矩阵方法 量子化条件 指数余弦库仑屏蔽势 本征能谱 ATMM quantization condition ECSC eigenenergy spectrum
  • 相关文献

参考文献12

  • 1Takimono N. On the screening of impurity potential by conduction electrom [ J]. J Phys SOc Jpn, 1959,14(9):1142-1158.
  • 2Prokopev E P. Positronium atom in solids [J]. Sov Phys Solid State, 1967,9(3):993-994.
  • 3Lam C S,Varshni Y P. Bound eigenstates of the exponential cosine screened coulomb potential [J]. Plays Rev A, 1972,6(4) : 1391- 1399.
  • 4Lai C S. Energies of the exponential cosine screened coulomb potential [J]. Phys Rev A, 1982,26(4) :2245-2238.
  • 5Aharonov Y, Au C K. New approach to perturbation theory [ J]. Phys Lett A, 1979,42(24):1582-1585.
  • 6Dutt R, Mukherji U, Varshni Y P. Energy levels and oscillator stengths for the exponential-cosine screened coulomb potential in the shifted large-dimension expansion theory [J] .J Phys B, 1986,19:3411-3419.
  • 7Roychoudhury R K, Bamana Roy. An algebraic approach to the exponential cosine screened coulomb potential [ J]. J Math Phys, 1986,27. (1):229-231.
  • 8Zhangqi Cao,Qing Liu,Qishtm Shen,et al.Quantizafion scheme for arbitrary one-dimensional potential wells [J] .Phys Rev A,2001,63 (5) :054103-1-054103-4.
  • 9Heading J. An introduction to phase integral methods [ M]. London: Methuen, i962.
  • 10Ou Y C,Cao Z Q,Shen Q S.Exact energy eigenvalues for spherically symmetrical three-dimensional potential [J] .Phys Lett A,2003, 318(1) :36-39.

二级参考文献16

  • 1Cooper X, Khare A, Sukhatme U. Supersymmetry in quantum mechanics [ M ]. Singapore: World Scientific Press,2001.
  • 2Cooper F, Khare A, Sukhatme U. Supersymmetry and quantum mechanics [ J ]. Phys Rep, 1995,251 ( 5 ) : 267 -385.
  • 3Heading J. An introduction to phase-integral methods [ M ]. London: Methuen, 1962.
  • 4Comtet A. Exactness of semiclassical bound state energies for supersynunetric quantum mechanics [ J ]. Phys Lett B, 1985,150 (3) 159-162.
  • 5Dutt R. Semiclassical approach to quantum-mechanical problems with broken supersymmetry [ J ]. Phys Rev A, 1993,48 (3) :1845-1853.
  • 6Dutt R, Khare A, Sukhatme U P. Exactness of supersymmetric WKB spectra for shape-invariant potentials [ J ]. Phys Lett B, 1986, 181 (4) :295-298.
  • 7Dutt R. Supersymmetry-inspired WKB approximation in quantum mechanics [ J ]. Am J Phys, 1991,59 ( 8 ) :723-727.
  • 8Hruska M. Accuracy of semiclassical methods for shape-invariant potentials [ J ]. Phys Rev A, 1997,55 ( 5 ) : 3345-3350.
  • 9Gangopadhyaya A. Broken supersymmetric shape invariant systems and their potential algebras [ J ]. Phys Lett A, 2001,283 (5) : 279 -284.
  • 10Adhikari R. Higher-order WKB approximations in supersymmetric quantum mechanics [ J ]. Phys Rev A, 1988,38 (4) :1679-1686.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部