摘要
提出一个量子概率克隆机的物理实现方案,该方案首先将高Q腔中的两个超导量子干涉仪分别作为初始比特和目标比特,腔模作为测量比特,通过腔模和经典微波脉冲与超导量子干涉仪的多种相互作用实现量子概率克隆机的幺正演化;然后将腔模态映射到另一个超导量子干涉仪上,通过对该超导量子干涉仪磁通量的测量完成状态坍缩,从而以最优的成功概率实现量子态的精确克隆.本方案采用双光子拉曼共振过程加快单比特门的操作速率,并且总操作时间远小于自发辐射和腔模衰变时间,因而在实验上是可行的.
A scheme is proposed for the physical realization of a quantum probabilistic cloning machine.First,with two superconducting quantum interference devices (SQUIDs) embedded in a high-Q cavity used as the original and target qubits respectively,and the cavity field as the measurement qubit,the unitary evolution required for the cloning machines is realized through multiple interactions of SQUID with the cavity or classical microwave pulses.Then the state reduction is implemented by mapping the cavity state onto another SQUID and measuring the magnetic flux of the SQUID,thus realizing the exact cloning of quantum states with optimal success probability.In this scheme,two–photon Raman resonance process is used to increase the single qubit operation rate,and the total operation time is far less the time of spontaneous decay and cavity decay.Therefore this scheme is experimentally feasible.
出处
《光子学报》
EI
CAS
CSCD
北大核心
2010年第3期537-542,共6页
Acta Photonica Sinica
基金
国家自然科学基金(60677044)资助