期刊文献+

腔QED中超导量子干涉仪概率克隆机的物理实现

Physical Realization of Probabilistic Cloning Machines of Superconducting Quantum Interference Devices in Cavity QED
下载PDF
导出
摘要 提出一个量子概率克隆机的物理实现方案,该方案首先将高Q腔中的两个超导量子干涉仪分别作为初始比特和目标比特,腔模作为测量比特,通过腔模和经典微波脉冲与超导量子干涉仪的多种相互作用实现量子概率克隆机的幺正演化;然后将腔模态映射到另一个超导量子干涉仪上,通过对该超导量子干涉仪磁通量的测量完成状态坍缩,从而以最优的成功概率实现量子态的精确克隆.本方案采用双光子拉曼共振过程加快单比特门的操作速率,并且总操作时间远小于自发辐射和腔模衰变时间,因而在实验上是可行的. A scheme is proposed for the physical realization of a quantum probabilistic cloning machine.First,with two superconducting quantum interference devices (SQUIDs) embedded in a high-Q cavity used as the original and target qubits respectively,and the cavity field as the measurement qubit,the unitary evolution required for the cloning machines is realized through multiple interactions of SQUID with the cavity or classical microwave pulses.Then the state reduction is implemented by mapping the cavity state onto another SQUID and measuring the magnetic flux of the SQUID,thus realizing the exact cloning of quantum states with optimal success probability.In this scheme,two–photon Raman resonance process is used to increase the single qubit operation rate,and the total operation time is far less the time of spontaneous decay and cavity decay.Therefore this scheme is experimentally feasible.
出处 《光子学报》 EI CAS CSCD 北大核心 2010年第3期537-542,共6页 Acta Photonica Sinica
基金 国家自然科学基金(60677044)资助
关键词 量子光学 腔量子电动力学 超导量子干涉仪 概率克隆机 Quantum optics Cavity-QED SQUID Quantum probabilistic cloning machine
  • 相关文献

参考文献19

  • 1WOOTTERS W K,ZUREK W H. A single quantum cannot be cloned[J].Nature,1982,299:802- 803.
  • 2SCARANI V, IBLISDIR S, GISIN N,et al. Quantum cloning [J]. Rev Mod Phys,2005,77(4) : 1225-1256.
  • 3BUZEK V, HILLERY M'. Quantum copying: Beyond the nocloning theorem[J]. Phys Rev A, 1996,54(3) : 1844 -1852.
  • 4DUAN Lu-ming, GUO Guang can. Probabilistic cloning and identification of linearly independent quantum states[J]. Phys Rev Lett,1998,80(22) : 4999- 5002.
  • 5DUAN Lu-ming, GUO Guang-can. A probabilistic cloningmachine for replicating two non-orthogonal states[J]. Phys Lett A,1998,243(5- 6) :261-264.
  • 6JAYNES E T,COMMINGS F W. Comparison of quantum and sem classical radiation theories with application to the beam maser[J]. IEEE, 1963,51(1):89-110.
  • 7陈美锋,马宋设.通过Raman相互作用制备三个腔场的W型纠缠相干态(英文)[J].光子学报,2007,36(5):950-954. 被引量:5
  • 8MILMAN P, OLLIVIER H, RAIMOND J M. Universal quantum cloning in cavity QED[J]. Phys Rev A, 2003,67(1) 012314-012317.
  • 9ZOU Xu-bo, PAHLKE K, MATHIS W. Scheme for the implementation of a universal quantum cloning machine via cavity-assisted atomic collisions in cavity QED[J]. Phys Rev A ,2003,67(2): 024304-024307.
  • 10YANG Jian, YU Ya-fei, ZHANG Zhi-ming, et al. Realization of universal quantum cloning with superconducting quantum- interference device qubits in a cavity[J]. Phys Rev A ,2008, 77(3): 034302 -034305.

二级参考文献19

  • 1BENNETT C H,BRASSARD G,CREPEAU C,et al.Teleporting an unknown quantum state via dual classical and EinsteinPodolsky-Rosen channels[J].Phys Rev Lett,1993,70 (13):1895-1899.
  • 2MATTLE K,WEINFURTER H,KWIAT P G,et al.Dense coding in experimental quantum communication[J].Phys Rev Lett,1996,76(25):4656-4659.
  • 3EKERT A K.Quantum cryptography based on Bell's theorem[J].Phys Rev Lett,1991,67(6):661-663.
  • 4VAIDMAN L.Teleportation of quantum states[J].Phys Rev A,1994,49(2):1473-1476.
  • 5BRAUNSTEIN S L,KIMBLE H J.Teleportation of continuous quantum variables[J].Phys Rev Lett,1998,80(4):869-872.
  • 6REID M D.Quantum cryptography with a predetermined key,using continuous-variable Einstein-Podolsky-Rosen correlations[J].Phys Rev A,2000,62(6):062308.
  • 7IDE T,HOFMANN H F,FURUSAWA A,et al.Gain tuning and fidelity in continuous-variable quantum teleportation[J].Phys Rev A,2002,65(6):062303.
  • 8JING J,ZHANG J,YAN Y,et al.Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables[J].Phys Rev Lett,2003.90 (16):167903.
  • 9GLOCKL O,LORENZ S,MARQUARDT C,et al.Experiment towards continuous-variable entanglement swapping:Highly correlated four-partite quantum state[J].Phys Rev A,2003,68(1):012319.
  • 10BRAUNSTEIN S L,VAN LOOCK P.Quantum information with continuous variables[J ].Rev Mod Phys,2005,77 (2):513-578.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部