期刊文献+

基于量子遗传算法的子空间拟合测向 被引量:1

DOA estimation using subspace fitting based on quantum genetic algorithm
下载PDF
导出
摘要 针对子空间拟合算法对独立信源和相干信源求解过程中,多维搜索运算量大的问题,通过采用实数编码的量子位表示染色体和用量子旋转门更新量子位的方法,提出一种实数编码的量子遗传方法(RC-QGA)来实现加权信号子空间拟合(WSSF)测向,从而有效地降低传统算法的计算量.还研究了WSSF算法的一维解相干性能和二维波达方向(DOA)估计性能.实验仿真表明,RC-QGA方法在进化代数为10时就可以达到收敛,有效提高了传统遗传算法的收敛性能,并且具有计算量小和估计性能优良的特点. The process of solving subspace fitting algorithm is a multi-dimensional search process requesting large amount of computation. In this paper, we propose a new method called real-coded quantum genetic algorithm ( RC- QGA) which is based on quantum rotary gate and genetic algorithm to realize weighted signal subspace fitting (WSSF) algorithm. This method effectively reduces the computational complexity. This paper researches on the performance of coherent sources and direction of arrival (DOA) estimation for two dimensional signals. Simulation results show that the RC-QGA algorithm can estimate coherent sources as well as two dimensional signals and has much better estimation performance than that of genetic algorithm (GA).
出处 《应用科技》 CAS 2010年第3期49-52,共4页 Applied Science and Technology
关键词 加权信号子空间拟合 DOA估计 量子旋转门 遗传算法(GA) 量子遗传算法 weighted signal subspace fitting DOA estimation quantum rotary gate GA quantum genetic algo- rithm
  • 相关文献

参考文献6

二级参考文献16

  • 1熊焰,陈欢欢,苗付友,王行甫.一种解决组合优化问题的量子遗传算法QGA[J].电子学报,2004,32(11):1855-1858. 被引量:50
  • 2HIRAFUJI M,HAGAN S.A global optimization algorithm based on the process of evolution in complex biological system[J].Computers and Electronics in Agriculture,2000,29:125-134.
  • 3GRIGORENKO I,GARCIA M E.Calculation of the partition function using quantum genetic algorithms[J].Physica A,2002,313:463-470.
  • 4RAMOS R V.Numerical algorithms for use in quantum information[J].Journal of Computational Physics,2003,192:95-104.
  • 5SAHIN M,TOMAK M.The self-consistent calculation of a spherical quantum dot A quantum genetic algorithm study[J].Physica E,2005,28:247-256.
  • 6罗景青.阵列信号处理基本理论与应用[M].合肥:解放军电子工程学院,2005.
  • 7周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2001.
  • 8Han K H,Kim J H.Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J].IEEE Transactions on Evolutionary Computation,2002,6(6),580-593.
  • 9Han K H,Kim J H.Genetic quantum algorithm and its application to combinatorial optimization problems[C].Proc of IEEE Conference on Evolutionary Computation.Piscataway:IEEE Press, 2000:1354-1360.
  • 10Han K H, Park K H.Parallel quantum-inspired genetic algorithm for combinatorial optimization problem[C].Proc of IEEE Conference on Evolutionary Computation.Piscataway:IEEE Press, 2001:1422-1429.

共引文献171

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部