期刊文献+

一种改进粒子群算法及其在热工过程模型辨识中的应用 被引量:6

AN IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM AND ITS APPLICATION IN IDENTIFICATION THROUGH THERMODYNAMIC PROCESS MODEL
下载PDF
导出
摘要 为了提高基本粒子群优化(PSO)算法的收敛性,提出了一种引入选择与变异机制的改进PSO算法。该算法选择一定范围的优秀粒子代替较差粒子,并使粒子以不同的概率变异。仿真试验表明,引入选择与变异机制使PSO算法的收敛速度得到了提高,并且有效抑制了PSO算法的早熟。将改进PSO算法应用于热工过程模型辨识,在较少的迭代次数内得到了比较精确的模型辨识结果,且具有很好的收敛性能,获得了满意的辨识效果。 In order to enhance the convergent behavior of the basic particle swarm optimization (PSO) algorithm,an improved PSO algorithm, into which the selection and mutation mechnisms being introduced,has been put forward. In the improved algorithm, a range of excellent particles is selected to substute the poor particles,and make the particles to mutate with different probability. Emulation test shows that the introduction of selection and mutation mechnisms makes the covergent rate PSO algorithm to be enhanced, and the precocity of PSO algorithm to be effectively restrained. The improved PSO algorithm has been used in identification through thermodynamic process model, a more precise result of model identification can be achieved in a smaller number of iterations, boasting very good convergent behavior,obtaining satisfactory results in identificarion.
出处 《热力发电》 CAS 北大核心 2010年第3期97-100,103,共5页 Thermal Power Generation
关键词 PSO算法 选择与变异 热工过程 模型辨识 收敛性 PSO algorithm selection and mutation thermodynamic process model identification
  • 相关文献

参考文献7

二级参考文献36

  • 1魏海坤,宋文忠,李奇.基于RBF网络的火电机组实时成本在线建模方法[J].中国电机工程学报,2004,24(7):246-252. 被引量:15
  • 2程启明,陈刚,王勇浩.电厂过热汽温神经PID控制系统的仿真研究[J].上海电力学院学报,2005,21(1):37-41. 被引量:5
  • 3薛定宇.控制系统计算机辅助设计[M].北京:清华大学出版社,2007.
  • 4潘立登.过程控制技术[M].北京:中国电力出版社,2007.
  • 5[4]Michalewicz, et al. Genetic algorithms and optimal control problem [R].Proc.of 29th IEEE Conf. On Decision and Control, 1990,1664-1666.
  • 6Lu S,Hogg B W.Dynamic nonlinear modeling of power plant by physical principles and neural networks[J].Electrical Power and Energy Systems,2000,22(1):67-78.
  • 7Wen Yu,Xiaoou Li.Some new results on system identification with dynamic neural networks[J].IEEE Trans on Networks,2001,12(2):412-417.
  • 8Alex Alexandridis,Haralambos Sarimveis,George Bafas.A new algorithm for online structure and parameter adaptation of RBF networks[J].Neural Networks,2003,16(7):1003-1017.
  • 9Goodwin G C,Sin K.Adaptire fitering,prediction and control[M].Engle wood Cliffs,NJ,Prentice Hall,1984.
  • 10Narendra K S,Parthasarathy K.Identification and control of dynamical systems using neural networks[J].IEEE Trans.on Neural Networks,1990,1(1):4-27.

共引文献167

同被引文献43

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部