期刊文献+

有关Bell多项式与Jacobsthal数的恒等式 被引量:3

Identities Involving Bell Polynomials and Jacobsthal Numbers
下载PDF
导出
摘要 通过研究Bell多项式矩阵与Jacobsthal矩阵之间的关系,得到了Jacobsthal数的一些性质,并且得到了一些重要的组合恒等式. The main purpose of this paper is to obtain the properties of Jacobsthal numbers and some com- binatorial identities by studying the relations between the Jacobsthal matrix and Bell polynomial matrix.
出处 《甘肃科学学报》 2010年第1期39-42,共4页 Journal of Gansu Sciences
基金 兰州理工大学优秀青年教师基金(Q200214)
关键词 BELL多项式 Jacobsthal数 组合恒等式 Bell polynomial Jacobsthal number combinatorial identity
  • 相关文献

参考文献12

  • 1W Wang, T Wang. Identities via Bell Matrix and Fibonaeci Matrix[J]. Discrete Appl. Math, 2008,156 (14):2 793-2 803.
  • 2N J A Sloane. Jacobsthal Sequence, From the On-Line Encyclopedia of Integer Sequences Web Resource[EB/OL]. http://www. research. att. com/njas/sequences/A001045.
  • 3G Y Lee,J SKim, S H. Cho. Some Combinatorial Identities via Fibonacci Numbers[J]. Discrete Appl. Math, 2003,130(3):527-534.
  • 4E W Weisstein.Lueas Sequence, From Math World-A Wolfram Web Resource[EB/OL]. http://www.mathworld.wolfram.com/LucasSequence, html.
  • 5M Tan,T Wang. Lah Matrix and Its Algebraic Properties[J]. Ars Cmbin,2004,70(3):197-108.
  • 6X Fu, X Zhou.On matrices Related with Fibonacei and Lueas Numbers[J]. Applied Mathematics and Computation, 2008,200 (1):96-100.
  • 7X Zhao,T Wang. The Algebraic Properties of the Generalized Pascal Matriees Associalated with the Exponential Families[J].Linear Algebra Appl,2000,318(1):45-52.
  • 8G S Cheon,J S Kim. Stifling Matrix via Pascal Matrix[J]. Linear Algebra Appl,2001,329(1-3) :49-59.
  • 9杨胜良.关于Bell多项式与二项式型多项式序列的若干恒等式[J].兰州大学学报(自然科学版),2007,43(4):100-103. 被引量:2
  • 10L.Comtet. Advanced Combinatorics[M]. D. Reidel Publishing Co. ,Dordrecht, 1974.

二级参考文献20

共引文献2

同被引文献16

  • 1Call G S, Vellman D J. Pascal matrices, Amer Math Monthly, 1993 ; 100 : 372-376.
  • 2Zhang Z Z, Wang X. A factorization of the symmetric Pascal matrix involving the Fibonacci matrix, Discrete Applied Math, 2007 ; 155 : 2371-2376.
  • 3Brawer R, Pirovino M. The linear algebra of the Pascal matrix. Linear Algebra and its Applications, 1992; 174:13-23.
  • 4Sloane N J A. Jacobsthal Sequence, From the On-line Encyclopedia of Integer Sequences Web Resource. http://www, research, att. com/ nj as/sequences/A001045.
  • 5Lee G Y, Kim J S, Cho S H. Some combinatorial identities via Fibonacci numbers. Discrete Apppl Math, 2003; 130:527-534.
  • 6Lee G Y, Kim J S, Lee S G. Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart. , 2002; 40 : 203-211.
  • 7Shapiro L W,Getu S,Woaa W J,etal. The Riordan Group,Discrete Appl[J]. Math,1991,34(1-3) :239-239.
  • 8Rogers D G. Pascal Triangles,Catalan Numbers and Renewal Arrays[J]. Discrete Math, 1978,22(3):301-310.
  • 9Wang W. Generalized Riordan Arrays[J]. Discrete Mathematics, 2008,308:6 466-6 500.
  • 10Gi Sang Cheon, El-Mikkawy M E A. Generalized Harmonic Numbers with Riordan Arrays[J]. Journal of Number Theory, 2008,128:413-425.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部