期刊文献+

沪深300股指期货的波动率预测模型研究 被引量:80

Volatility forecasting models for CSI300 index futures
下载PDF
导出
摘要 以沪深300股指期货仿真交易的5分钟高频数据为例,运用滚动时间窗的样本外预测和具有Bootstrap特性的SPA检验法,全面对比了基于日收益数据的历史波动率(historical volatility)模型和基于高频数据的已实现波动率(realized volatility)模型对波动率的刻画和预测能力.主要实证结果显示,已实现波动率模型以及加入附加解释变量的扩展随机波动模型是预测精度较高的波动模型,而在学术界和实务界常用的GARCH及其扩展模型对沪深300股指期货的波动率预测能力最弱. Taking 5-minutes high-frequency mock trading data of CSI300 index futures as example, the out-of- sample daily volatility predictions of these models are calculated by using rolling predicting method, and a bootstrap SPA test is used to evaluate the predicting accuracy for different historical volatility models and real- ized volatility models. The empirical results show that, realized volatility model based on high-frequency data and the extended SV model are superior to other models. However the GARCH and its extended model, which are popular in financial academe and practice, perform worst for volatility predicting of CSI300 index futures.
作者 魏宇
出处 《管理科学学报》 CSSCI 北大核心 2010年第2期66-76,共11页 Journal of Management Sciences in China
基金 国家自然科学基金资助项目(70501025 70771097 70771095) 教育部新世纪优秀人才支持计划资助项目(NCET-08-0826) 教育部创新团队发展计划资助项目(PCSIRT0860)
关键词 沪深300股指期货 已实现波动率模型 随机波动模型 GARCH模型 SPA检验 CSI300 index futures realized volatility model SV model GARCH model SPA test
  • 相关文献

参考文献17

二级参考文献48

  • 1Akgiray, V. Conditional heteroscedasticity in time series of stock returns[J]. Journal of Business , 1989, 62,55- 80.
  • 2Braisford,T.J. and Faff, R. W. An evaluation of volatility forecasting technique[J]. Journal of Banking and Finance,1996,20,419- 438.
  • 3Tse, Y. K. and Tung, S. H. Forecasting volatility in theSingapore stock market[J]. Asia Pacific Journal of Management, 1992,9,1- 13.
  • 4Dimson,E. and marsh,P. Volatility forecasting without data- snooping[J]. Journal of Banking and Finance, 1990,14,399- 421.
  • 5Jun, YU. Forecasting volatility in the New Zealand stock market[J]. Journal of Financial Economics,2002,12,193 - 202.
  • 6Schwert,G.W. Why does stock market volatility change over time[J]. Journal of Finance ,1989 ,44 (5) :1115 - 1153.
  • 7Ghysels,E., harvey, A.C. and renault, E. Stochastic Volatility, Handbook of Statistics[M] .1996,14.
  • 8Bailie,R. and Bollerslev,T. Prediction in dynamic models with time- dependent conditional variances[J]. Journal of Econometrics,52,91 - 113.
  • 9Andersen T G,Bollerslev T,Diebold F,Labys P. Exchange rate returns standardized by realized volatility are (nearly) Gaussian[J]. Multinational Finance Journal,2000,4:159~179.
  • 10Andersen T G,Bollerslev T,Diebold F,Labys P. The distribution of exchange rate volatility[J]. Journal of American Statistical Association,2001,96:42~55.

共引文献158

同被引文献871

引证文献80

二级引证文献540

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部