期刊文献+

4×4 V-BLAST系统分组最大似然检测算法 被引量:1

Group Maximum Likelihood Detection Algorithm for a 4×4 V-BLAST System
下载PDF
导出
摘要 对于V-BLAST系统的检测,最大似然(ML)算法有着最优的性能却也有最大的计算复杂度;经典的排序连续干扰抵消(OSIC)算法复杂度较低,但数值稳定性差,且性能与ML差距较大。因此,本文基于检测性能和计算复杂度折中的思想,针对4×4 V-BLAST系统提出了一种分组最大似然(Group ML,GML)检测算法,在保证较好检测性能的基础上,通过将四维ML检测器分成两组二维ML检测器来降低计算复杂度。此外,本文还提出了一种简化的最大似然(Simpli-fied ML,SML)检测算法,通过将每组中的二维ML检测器的搜索空间从二维降至一维,进一步降低了计算复杂度,并证明其与ML算法具有一致的性能。仿真表明,在误符号率为10-3时GML算法相比OSIC算法有约7dB的性能提升。经分析知,GML算法复杂度与ML-OSIC算法相比在高阶调制方式下有着显著的降低,易于硬件实现。 Maximum likelihood(ML) algorithm not only has optimal performance but also has maximal computational complexity for detection of V-BLAST systems. Classical ordered successive interference cancellation(OSIC) algorithm has much lower complexity. However, it has a numerical value stability problem and has a largish performance gap by comparison to ML algorithm. Therefore, a group maximum likelihood (GML) algorithm is proposed for a 4×4 V-BLAST system in this paper, which is based on tradeoff between detection performance and computational complexity. On the basis of guarantee of preferable detection performance, it divides a four-dimension (4-D) ML detector into two 2-D ML detectors to reduce computational complexity. Moreover, a simplified maximum likelihood (SML) algorithm is also proposed to reduce further complexity by reducing the searching space of each 2-D ML detector from 2-D to 1 - D. Simulations show that GML algorithm has about 7dB performance gain compared with OSIC algorithm at symbol error rate equals to 10 -3. After analysis, GML algorithm' s complexity reduces remarkably in large constellation modulation manner in comparison with that of ML-OSIC algorithm. This facilitates the hardware implementation.
出处 《信号处理》 CSCD 北大核心 2010年第3期369-374,共6页 Journal of Signal Processing
关键词 V—BLAST 最大似然(ML) 分组最大似然(GML) 简化最大似然(SML) V-BLAST Maximum Likelihood(ML) Group ML(GML) Simplified ML(SML)
  • 相关文献

参考文献1

二级参考文献1

共引文献5

同被引文献19

  • 1程文驰,张海林.逼近最大似然(ML)性能的降维VBLAST检测算法[J].中国科学:信息科学,2010,40(8):1106-1112. 被引量:2
  • 2苏昕,孙永军,易克初.一种结合ML检测的高性能V-BLAST系统[J].西安电子科技大学学报,2005,32(3):344-347. 被引量:6
  • 3FOSCHINI G J, GANS M J. On limits of wireless communications in a fading environment when using multiple antennas [ J]. Wireless Personal Communications, 1998 (6) :311 -335.
  • 4PAULRAJ A. Introduction to space time wireless communication [ M ]. London : Cambridge University Press, 2003.
  • 5LANEMAN J N, WORNELL G W. Distributed spacetime-coded protocols for exploiting cooperative diversity in wireless networks [ J ]. IEEE Transactions on Information Theory, 2003, 49(10) : 2415 -2425.
  • 6CUI Shuguang, GOLDSMITH A J, AHMAD B. Energy- efficiency of MIMO and cooperative MIMO techniques in sensor networks [ J ]. IEEE Journal on Selected Areas in Communications, 2004, 22 (6) : 1089 - 1098.
  • 7LI Xiaohua. Energy efficient wireless sensor networks with transmission diversity [ J ]. IEEE Electronics Letters, 2003, 39(24) : 1753 - 1755.
  • 8LI Xiaohua, CHEN Mo, LIU wenyu. Application of STBC-encoded cooperative transmissions in wireless sensor networks [J]. IEEE Signal Processing Letters, 2005, 12 (2) : 134 - 137.
  • 9JAYAWEERA S K, CHEBOLU M L. Virtual MIMO and distributed signal processing for sensor networks-an inte grated approach[ C ]//Proceedings of the IEEE International Conference on Communications (ICC 05 ). Seoul, Korea: IEEE Press, 2005 : 1214 - 1218.
  • 10RALEIGH G G, CIOFFI J M. Spatio-temporal coding for wireless communications [ J ].IEEE Trans Communications, 1998, 46(3) : 357 -366.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部