期刊文献+

两种广义的(G′/G)-展开法及其应用(英文)

Two Generalizations of the (G'/G)-Expansion Method and Their Applications
下载PDF
导出
摘要 提出了两种广义的(G′/G)-展开法,利用该方法可以得到非线性发展方程的更多不同种类的精确解.作为应用,利用广义的方法得到了(2+1)维色散的长波方程和Broer-Kaup方程的新的非行波解. Two generalizations of the (G′/G)- expansion method are proposed which result in more different types of exact solutions to nonlinear evolution equations. As applications, the new exact non--travelling wave solutions of the (2 +1) -- dimension dispersive long wave equations and the Broer--Kaup equations are obtained by using two generalized methods.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期144-152,共9页 Journal of Inner Mongolia University:Natural Science Edition
基金 Supported by the Special Foundation of Doctoral Unit of the Ministry of Education of China(No.20070128001) Scientific Research innovation Project of Shanghai Education Committee(No.09YZ239)~~
关键词 广义的(G′/G)-展开法 精确解 (2+1)维色散的长波方程 Broer--Kaup方程 generalized (G′/G) -- expansion method exact solution the ( 2 + 1 ) -- dimension dispersive long wave equations the Broer--Kaup equation
  • 相关文献

参考文献30

  • 1Ablowitz M J, Clarkson P A. Solitons, nonlinear evolution equations and inverse scattering [M]. Cambridge: Cambridge University Press, 1991.
  • 2Beals R,Coifman R R. Scattering and inverse scattering for 1st order system[J].Commun. Pure. Appl. Math. , 1984,37 : 39-90.
  • 3Matveev V B, Salle M A. Darboux transformation and solitons [M]. Berlin.. Springer, 1991.
  • 4Fan E G. A family of completely integrable multi- Hamiltonian systems explicitly related to some celebrated equations[J]. J. Math. Phys. , 2001,42 : 4327-4344.
  • 5Hirota R,Satsuma J. Soliton solution of a coupled KdV equation[J]. Phys. Lett. A, 1981,85:407-408.
  • 6Tam H W,Ma W X,Hu X B,et al. The Hirota--Satsuma coupled KdV equation and a coupled Ito system revisited[J]. J. Phys. Soc. J pn. ,2000,69:45-51.
  • 7Weiss J, Tabor M, Carnevale G. The Painleve property for partial differential equations[J].. J. Math. Phys. , 1983, 24..522-526.
  • 8Abdou M A. New solitons and periodic wave solutions for nonlinear physical models[J]. Nonlinear Dyn. , 2008, 52: 129-136.
  • 9Fan E G. Extended tanh-- function method and its applications to nonlinear equations[J]. Phys. Lett. A,, 2000, 277:212-218.
  • 10Parkes E J, Duffy B R. An automated tanh- function method for finding solitary wave solutions to non-linear evolution equations[J]. Comput. Phys. Commun. , 1996,98 : 288-300.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部