期刊文献+

二维Helmholtz方程的高阶紧致差分方法 被引量:2

High-Order Compact Difference Scheme for Solving Two-dimensional Helmholtz Equation
下载PDF
导出
摘要 基于二阶导数的四阶Padé型紧致差分逼近式,并结合原方程本身,得到了二维Helm-holtz一种四阶精度的紧致差分格式.该格式在每个空间方向上只涉及到三个点处的未知量及其二阶导数值,边界处对于二阶导数利用四阶显式偏心格式.然后,利用Richardson外推法、算子插值法及二阶导数在边界点处的六阶显式偏心格式,将本文构造的二维Helmholtz方程四阶紧致差分格式的精度提高到六阶.最后,通过数值实验验证了本文方法的精确性和可靠性. Based on the Pade scheme of second-order derivatives, a fourth-order compact difference scheme is proposed for solving two-dimensional Helmhohz equation. Fourth-order explicit difference schemes are used to construct the same order discretization of boundary points. Then,the accuracy of the fourth-order compact difference schemes is upgraded to sixth-order by using Rich- ardson extrapolation technique and operator interpolation scheme. Sixth-order explicit difference schemes of second-order derivatives on the boundaries are used. At last, numerical experiments are given to prove the efficiency and dependability of present method.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期176-180,共5页 Journal of Inner Mongolia University:Natural Science Edition
基金 国家自然科学基金资助项目(10502026 10662006)
关键词 HELMHOLTZ方程 高精度 紧致差分格式 RICHARDSON外推法 Helmholtz equation high accuracy compact difference scheme Richardson extrapolation
  • 相关文献

参考文献6

  • 1Bayliss S,Goldstein C I,Turkel E. An interative method for the Helmholtz equation [J]. J Comput Phys, 1983, 49:443-457.
  • 2Bayliss A,Goldstein C I,Turkel E. The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics[J].Computer Math Applic, 1985,11:655-665.
  • 3Manohar R P,Stephenson J W. Single cell high order difference methods for the Helmholtz equation [J]. J Comput Phys, 1983,51 : 444-453.
  • 4Sun X H,Zhuang Y. A high-order direct solver for Helmholtz equation with Neumann boundary conditions [R]. NASA ICASE Technical Report NO. 97-11. NASA Langley Research Center,Hampton,VA , 1997.
  • 5Zhuang Y,Sun X H. A high order ADI method for separable generalized Helmholtz equations [J]. Advances in Engineering Software, 2000,31:585-591.
  • 6Lele S K. Compact finite difference schemes with spectral-like resolution [J]. J Comput Phys, 1992,103:16-29.

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部